diff --git a/lambda/src/LambdaDatasets/GermanDataset.hs b/lambda/src/LambdaDatasets/GermanDataset.hs index 40131c1..3c175c5 100644 --- a/lambda/src/LambdaDatasets/GermanDataset.hs +++ b/lambda/src/LambdaDatasets/GermanDataset.hs @@ -151,6 +151,7 @@ data LamdaExecutionEnv = LamdaExecutionEnv data FittnesRes = FittnesRes { total :: R, fitnessTotal :: R, + costAccordingToDataset :: N, fitnessGeoMean :: R, fitnessMean :: R, accuracy :: R, @@ -189,8 +190,9 @@ evalResults ex trs = do evalResult :: LamdaExecutionEnv -> TypeRequester -> (AccountStatus -> Int -> CreditHistory -> Purpose -> Int -> Savings -> EmploymentStatus -> Int -> StatusAndSex -> OtherDebtors -> Int -> Property -> Int -> OtherPlans -> Housing -> Int -> Job -> Int -> Bool -> Bool -> GermanClass) -> (TypeRequester, FittnesRes) evalResult ex tr result = ( tr, FittnesRes - { total = acc * 100 + (biasSmall - 1), + { total = (biasSmall - 1) - (fromIntegral costAccordingToDS), fitnessTotal = fitness', + costAccordingToDataset = costAccordingToDS, fitnessMean = meanOfAccuricyPerClass resAndTarget, fitnessGeoMean = geomeanOfDistributionAccuracy resAndTarget, accuracy = acc, @@ -201,7 +203,8 @@ evalResult ex tr result = ( tr, where res = map (\(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> result a b c d e f g h i j k l m n o p q r s t) (fst (dset ex)) resAndTarget = (zip (snd (dset ex)) res) - acc = (foldr (\ts s -> if ((fst ts) == (snd ts)) then s + 1 else s) 0 resAndTarget) / fromIntegral (length resAndTarget) + acc = (foldr (\(actual,predicted) s -> if (actual == predicted) then s + 1 else s) 0 resAndTarget) / fromIntegral (length resAndTarget) + costAccordingToDS = (foldr (\(actual,predicted) s -> if ((actual) == (predicted)) then s else (if actual == Deny then s+5 else s+1)) 0 resAndTarget) biasSmall = exp ((-(fromIntegral (countTrsR tr))) / 1000) -- 0 (schlecht) bis 1 (gut) fitness' = meanOfAccuricyPerClass resAndTarget score = fitness' + (biasSmall - 1)