{-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE NoImplicitPrelude #-} module LambdaCalculus where import Data.List (foldr1, intersect, last, nub, (!!), (\\)) import qualified Data.List.NonEmpty as NE import qualified Data.Map.Strict as Map import Data.Maybe import Data.Random import qualified Data.Text as T import Data.Tuple.Extra import Data.Typeable import Debug.Trace as DB import GA import Pretty import Protolude import Protolude.Error import Test.QuickCheck hiding (sample, shuffle) import Test.QuickCheck.Monadic (assert, monadicIO) import qualified Type.Reflection as Ref import Utils data ExpressionWeights = ExpressionWeights { lambdaSpucker :: Int, lambdaSchlucker :: Int, symbol :: Int, variable :: Int, constant :: Int } data LambdaEnviroment = LambdaEnviroment { functions :: (Map TypeRep [ConVal]), constants :: (Map TypeRep [RVar ConVal]), targetType :: TypeRep, maxDepth :: Int, weights :: ExpressionWeights } showSanifid :: (Show a) => a -> Text showSanifid var = T.replace " -> " "To" (show var) exampleLE :: LambdaEnviroment exampleLE = LambdaEnviroment { functions = Map.fromList [ ((Ref.SomeTypeRep (Ref.TypeRep @(Int -> Int -> Int))), ["(+)", "(-)", "(*)", "mod"]), ((Ref.SomeTypeRep (Ref.TypeRep @(Int -> Int -> Bool))), ["(>)", "(==)", "(>=)"]), ((Ref.SomeTypeRep (Ref.TypeRep @(Bool -> Int -> Int -> Int))), ["if'"]) ], constants = Map.fromList [ ((Ref.SomeTypeRep (Ref.TypeRep @(Int))), [(fmap show (uniform 0 10000 :: RVar Int))]), ((Ref.SomeTypeRep (Ref.TypeRep @(Bool))), [(fmap show (uniform True False :: RVar Bool))]) ], targetType = (Ref.SomeTypeRep (Ref.TypeRep @(Int -> Int -> Int))), maxDepth = 10, weights = ExpressionWeights { lambdaSpucker = 1, lambdaSchlucker = 2, symbol = 2, variable = 10, constant = 2 } } type BoundVars = [TypeRep] -- we need a dynamic typ with a concept of equality here, should we want to interpret the result, instead of compiling it... type ConVal = Text -- LambdaSpucker - adds TypeRequester#1 as bound var and returns the result of TypeRequester#2 data LambdaExpression = LambdaSpucker TypeRequester TypeRequester BoundVars | LambdaSchlucker TypeRequester BoundVars | Symbol ConVal [TypeRequester] BoundVars | Var TypeRep Int [TypeRequester] BoundVars | Constan ConVal deriving (Eq, Ord, Show) asList :: LambdaExpression -> [TypeRequester] asList (LambdaSpucker tr1 tr2 _) = [tr1, tr2] asList (LambdaSchlucker tr _) = [tr] asList (Symbol _ trs _) = trs asList (Var _ _ trs _) = trs asList (Constan _) = [] data TypeRequester = TR TypeRep (Maybe LambdaExpression) BoundVars deriving (Eq, Ord, Show) toLambdaExpressionS :: TypeRequester -> Text toLambdaExpressionS (TR typeRep (Just lambdaExpression) boundVars) = "((" <> eToLambdaExpressionS lambdaExpression <> ") :: (" <> show typeRep <> "))" toLambdaExpressionS (TR _ (Nothing) _) = "Invalid Lambda Epr" -- data LambdaExpression = LambdaSpucker TypeRequester TypeRequester BoundVars | LambdaSchlucker TypeRequester BoundVars | Symbol ConVal [TypeRequester] BoundVars | Var TypeRep Int [TypeRequester] BoundVars | Constan ConVal deriving (Eq, Ord, Show) eToLambdaExpressionS :: LambdaExpression -> Text eToLambdaExpressionS (LambdaSpucker typeRequester1 typeRequester2 boundVars) = "(\\l" <> showSanifid (last boundVars) <> show (count boundVars (last boundVars) - 1) <> " -> " <> toLambdaExpressionS typeRequester2 <> ") " <> toLambdaExpressionS typeRequester1 eToLambdaExpressionS (LambdaSchlucker typeRequester boundVars) = "\\l" <> showSanifid (last boundVars) <> show (count boundVars (last boundVars) - 1) <> " -> " <> toLambdaExpressionS typeRequester eToLambdaExpressionS (Symbol (valS) typeRequesters _) = valS <> " " <> (unwords (map toLambdaExpressionS typeRequesters)) eToLambdaExpressionS (Var typeRep int typeRequesters _) = "l" <> showSanifid typeRep <> show int <> " " <> (unwords (map toLambdaExpressionS typeRequesters)) eToLambdaExpressionS (Constan (valS)) = valS instance Pretty TypeRequester where pretty = toLambdaExpressionShort instance Individual TypeRequester instance Pretty LambdaEnviroment where pretty (LambdaEnviroment functions constants target _ _) = "Functions: " <> show functions <> " Constants: " <> show (Map.keys constants) <> " Target is a function: " <> show target genTypeRequester :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar TypeRequester genTypeRequester env depthLeft target boundVars = do le <- genLambdaExpression env (depthLeft - 1) target boundVars return (TR target (Just le) boundVars) genLambdaExpression :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaExpression env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar = do let weightMap = ( if not (canGenSchlucker target) then [(constant weights, genLambdaConst env depthLeft target boundVar)] else [] ) <> ( if depthLeft > 0 then [(lambdaSpucker weights, genLambdaSpucker env depthLeft target boundVar)] else [] ) <> ( if canGenSchlucker target then [(lambdaSchlucker weights, genLambdaSchlucker env depthLeft target boundVar)] else [] ) <> ( if depthLeft > 0 && doAnyMatchThatType target (Map.keys functions) then [(symbol weights, genLambdaSymbol env depthLeft target boundVar)] else [] ) <> ( if depthLeft > 0 && doAnyMatchThatType target boundVar then [(variable weights, genLambdaVar env depthLeft target boundVar)] else [] ) expres <- selectWeighted weightMap res <- expres return res selectWeighted :: [(Int, a)] -> RVar a selectWeighted x = do let total = sum (map fst x) selection <- uniform 1 total return $ selectAtWeight selection (NE.fromList x) selectAtWeight :: Int -> NonEmpty (Int, a) -> a selectAtWeight _ (x :| []) = snd x selectAtWeight w (x :| xs) | fst x >= w = snd x | otherwise = selectAtWeight (w - fst x) (NE.fromList xs) canGenSchlucker :: TypeRep -> Bool canGenSchlucker t = (typeRepTyCon t) == (typeRepTyCon (Ref.SomeTypeRep (Ref.TypeRep @(->)))) doAnyMatchThatType :: TypeRep -> [TypeRep] -> Bool doAnyMatchThatType toGen available = any (doTypesMatch toGen) available doTypesMatch :: TypeRep -> TypeRep -> Bool doTypesMatch toGen available = elem toGen (available : (repeatedly (lastMay . typeRepArgs) available)) genLambdaSpucker :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaSpucker env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar = do lamdaTypeLength <- uniform 1 4 lambaTypes <- replicateM lamdaTypeLength (randomElement (Map.keys constants)) let lambaType = foldr1 mkFunTy lambaTypes lamdaVarTypeRequester <- genTypeRequester env depthLeft lambaType boundVar typeRequester <- genTypeRequester env depthLeft target (boundVar ++ [lambaType]) return (LambdaSpucker lamdaVarTypeRequester typeRequester (boundVar ++ [lambaType])) genLambdaSchlucker :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaSchlucker env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar = do let args = typeRepArgs target let lambaType = fromJust (head args) let toFind = last args typeRequester <- genTypeRequester env (depthLeft + 1) toFind (boundVar ++ [lambaType]) return (LambdaSchlucker typeRequester (boundVar ++ [lambaType])) genLambdaConst :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaConst env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar = do elm <- randomElement $ fromJust (Map.lookup target constants) res <- elm return $ Constan res genLambdaSymbol :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaSymbol env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar = do let availFunTypes = filter (doTypesMatch target) (Map.keys functions) (tr, fun) <- randomElement $ concatMap (\l -> zip (repeat l) (fromMaybe [] (Map.lookup l functions))) availFunTypes ret <- genLambdaSymbol' tr fun [] env depthLeft target boundVar return ret genLambdaSymbol' :: TypeRep -> ConVal -> [TypeRequester] -> LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaSymbol' tr v trs env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar | tr == target = do return $ Symbol v trs boundVar | otherwise = do let args = typeRepArgs tr let param = fromJust (head args) let rest = last args newTypeRequ <- genTypeRequester env depthLeft param boundVar ret <- genLambdaSymbol' rest v (trs ++ [newTypeRequ]) env depthLeft target boundVar return ret genLambdaVar :: LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaVar env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar = do let availTypes = filter (doTypesMatch target) boundVar choosenType <- randomElement $ availTypes let tCount = count boundVar choosenType indexV <- uniform 0 (tCount - 1) ret <- genLambdaVar' choosenType choosenType indexV [] env depthLeft target boundVar return ret genLambdaVar' :: TypeRep -> TypeRep -> Int -> [TypeRequester] -> LambdaEnviroment -> Int -> TypeRep -> BoundVars -> RVar LambdaExpression genLambdaVar' tr varType varNumber trs env@(LambdaEnviroment functions constants _ _ weights) depthLeft target boundVar | tr == target = do return $ Var varType varNumber trs boundVar | otherwise = do let args = typeRepArgs tr let param = fromJust (head args) let rest = last args newTypeRequ <- genTypeRequester env depthLeft param boundVar ret <- genLambdaVar' rest varType varNumber (trs ++ [newTypeRequ]) env depthLeft target boundVar return ret instance Environment TypeRequester LambdaEnviroment where new env@(LambdaEnviroment _ _ target maxDepth _) = do tr <- genTypeRequester env maxDepth target [] return tr mutate env@(LambdaEnviroment _ _ _ maxDepth _) tr = do selfCrossover <- uniform True False co <- crossover1 env tr tr if selfCrossover && isJust co then do let (tr1, tr2) = fromJust co return $ minimumBy (compare `on` countTrsR) [tr1, tr2] else do let trCount = countTrsR (tr) selectedTR <- uniform 1 trCount let (depthAt, (TR trep _ bound)) = depthLeftAndTypeAtR tr selectedTR maxDepth res <- genTypeRequester env depthAt trep bound return $ replaceAtR selectedTR tr res nX _ = 3 -- todo! crossover1 env@(LambdaEnviroment _ _ _ maxDepth _) tr1 tr2 = do let trCount = countTrsR tr1 selectedIndex1 <- uniform 1 trCount let (depthAt1, selectedTr1@(TR _ _ bound1)) = depthLeftAndTypeAtR tr1 selectedIndex1 maxDepth let depthLeftNeeded = depthOfTR selectedTr1 let indexes = findIndicesWhere tr2 (isCompatibleTr selectedTr1 (maxDepth - depthAt1) depthLeftNeeded) 0 0 if length indexes == 0 then return Nothing else ( do (selectedTr2@(TR _ _ bound2), selectedIndex2) <- randomElement indexes selectedTr2 <- adaptBoundVars selectedTr2 bound1 selectedTr1 <- adaptBoundVars selectedTr1 bound2 let child1 = replaceAtR selectedIndex1 tr1 selectedTr2 let child2 = replaceAtR selectedIndex2 tr2 selectedTr1 return $ Just (child1, child2) ) -- helper depthOfTR :: TypeRequester -> Int depthOfTR (TR _ (Just le@(LambdaSchlucker _ _)) _) = maximum (0:(map depthOfTR (asList le))) depthOfTR (TR _ (Just le) _) = maximum (0:(map depthOfTR (asList le))) + 1 depthOfTR _ = error "le Not Just (depthOfTR)" adaptBoundVars :: TypeRequester -> BoundVars -> RVar TypeRequester adaptBoundVars tr@(TR _ _ bvOld) bvNew = do newIndexMap <- generateConversionIndexMap bvOld bvNew return $ convertTr tr bvOld bvNew newIndexMap convertTr :: TypeRequester -> BoundVars -> BoundVars -> Map TypeRep (Int -> Int) -> TypeRequester convertTr tr@(TR tRp (Just le) bvCurr) bvOld bvNew mapper = TR tRp (Just (convertLe le bvOld bvNew mapper)) (bvNew ++ (bvCurr \\ bvOld)) convertTr _ _ _ _ = error "le Not Just (convertTr)" -- data LambdaExpression = LambdaSpucker TypeRequester TypeRequester BoundVars | LambdaSchlucker TypeRequester BoundVars | Symbol ConVal [TypeRequester] BoundVars | Var TypeRep Int [TypeRequester] BoundVars | Constan ConVal deriving (Eq, Ord, Show) convertLe :: LambdaExpression -> BoundVars -> BoundVars -> Map TypeRep (Int -> Int) -> LambdaExpression convertLe (LambdaSpucker tr1 tr2 bvCurr) bvOld bvNew mapper = LambdaSpucker (convertTrf tr1) (convertTrf tr2) (bvNew ++ (bvCurr \\ bvOld)) where convertTrf tr = convertTr tr bvOld bvNew mapper convertLe (LambdaSchlucker tr bvCurr) bvOld bvNew mapper = LambdaSchlucker (convertTrf tr) (bvNew ++ (bvCurr \\ bvOld)) where convertTrf tr = convertTr tr bvOld bvNew mapper convertLe (Symbol cv trs bvCurr) bvOld bvNew mapper = Symbol cv (map convertTrf trs) (bvNew ++ (bvCurr \\ bvOld)) where convertTrf tr = convertTr tr bvOld bvNew mapper convertLe (Var varType varNumber trs bvCurr) bvOld bvNew mapper = Var varType ((fromMaybe identity (Map.lookup varType mapper)) varNumber) (map convertTrf trs) (bvNew ++ (bvCurr \\ bvOld)) where convertTrf tr = convertTr tr bvOld bvNew mapper convertLe le@(Constan _) _ _ _ = le generateConversionIndexMap :: BoundVars -> BoundVars -> RVar (Map TypeRep (Int -> Int)) generateConversionIndexMap bvOld bvNew = do funcs <- mapM (\bT -> genMapper (count bvOld bT - 1) (count bvNew bT - 1)) (nub bvOld) return $ Map.fromList $ zip (nub bvOld) funcs genMapper :: Int -> Int -> RVar (Int -> Int) genMapper i j | i == j = return identity | i < j = return $ \int -> if int <= i then int else int + (j - i) | i > j = do permutationForUnbound <- genPermutation i j return $ genMapperRandomAssment i j permutationForUnbound | otherwise = error "impossible case in genMapper" genMapperRandomAssment :: Int -> Int -> [Int] -> Int -> Int genMapperRandomAssment i j permutationForUnbound int | int <= j = int | int > i = int - (i - j) | otherwise = permutationForUnbound !! (int - j - 1) genPermutation :: Int -> Int -> RVar [Int] genPermutation i j = replicateM (i - j) (uniform 0 j) isCompatibleTr :: TypeRequester -> Int -> Int -> TypeRequester -> Int -> Bool isCompatibleTr tr1@(TR trep1 _ bound1) maxDepthOfTR2 maxDepthOfNode tr2@(TR trep2 _ bound2) depthOfNode | trep1 == trep2 = allUsedBound (usedVars bound1 tr1) bound2 && allUsedBound (usedVars bound2 tr2) bound1 && maxDepthOfTR2 >= (depthOfTR tr2) && maxDepthOfNode >= depthOfNode | otherwise = False allUsedBound :: BoundVars -> BoundVars -> Bool allUsedBound used available = all (\x -> any (== x) available) used usedVars :: BoundVars -> TypeRequester -> BoundVars usedVars boundOld tr@(TR trep1 (Just (Var trp ind trs _)) _) = if any (== trp) boundOld && count boundOld trp > ind then trp : concatMap (usedVars boundOld) trs else concatMap (usedVars boundOld) trs usedVars boundOld tr@(TR trep1 (Just le) _) = concatMap (usedVars boundOld) (asList le) usedVars _ _ = error "Nothing in usedVars" boundsConvertable :: BoundVars -> BoundVars -> Bool boundsConvertable bv1 bv2 = length (nub bv2) == length (nub bv1) && length (intersect (nub bv1) bv2) == length (nub bv1) findIndicesWhere :: TypeRequester -> (TypeRequester -> Int -> Bool) -> Int -> Int -> [(TypeRequester, Int)] findIndicesWhere tr@(TR _ (Just le@(LambdaSchlucker _ _)) _) filte indx currDepth = if filte tr currDepth then (tr, indx + 1) : (findIndicesWhere' (asList le) filte (indx + 1) (currDepth)) else (findIndicesWhere' (asList le) filte (indx + 1) (currDepth)) findIndicesWhere tr@(TR _ lE _) filte indx currDepth = case lE of Just le -> if filte tr currDepth then (tr, indx + 1) : (findIndicesWhere' (asList le) filte (indx + 1) (currDepth + 1)) else (findIndicesWhere' (asList le) filte (indx + 1) (currDepth + 1)) Nothing -> error "Nothing in findIndicesWhere" findIndicesWhere' :: [TypeRequester] -> (TypeRequester -> Int -> Bool) -> Int -> Int -> [(TypeRequester, Int)] findIndicesWhere' [] _ _ _ = [] findIndicesWhere' [tr] f indx currDepth = (findIndicesWhere tr f indx currDepth) findIndicesWhere' (tr : trs) f indx currDepth = (findIndicesWhere tr f indx currDepth) ++ (findIndicesWhere' trs f (indx + countTrsR tr) currDepth) replaceAtR :: Int -> TypeRequester -> TypeRequester -> TypeRequester replaceAtR 1 _ with = with replaceAtR i (TR tm (Just le) bV) with = TR tm (Just (replaceAt (i - 1) le with)) bV replaceAtR _ (TR _ Nothing _) _ = error "Nothing in replaceAtR" replaceAt :: Int -> LambdaExpression -> TypeRequester -> LambdaExpression replaceAt i le@(LambdaSpucker _ _ bv) with = LambdaSpucker (fromJust (head trs)) (last trs) bv where trs = replaceInSubtreeWithIndex i (asList le) with replaceAt i (LambdaSchlucker tr bv) with = LambdaSchlucker (replaceAtR i tr with) bv replaceAt i le@(Symbol cv _ bv) with = Symbol cv trs bv where trs = replaceInSubtreeWithIndex i (asList le) with replaceAt i le@(Var tr ix _ bv) with = Var tr ix trs bv where trs = replaceInSubtreeWithIndex i (asList le) with replaceAt _ (Constan _) _ = error "Nothing in replaceAt" replaceInSubtreeWithIndex :: Int -> [TypeRequester] -> TypeRequester -> [TypeRequester] replaceInSubtreeWithIndex indexLeft (tr : trs) with = if countTrsR tr >= indexLeft then (replaceAtR indexLeft tr with) : trs else tr : (replaceInSubtreeWithIndex (indexLeft - countTrsR tr) trs with) replaceInSubtreeWithIndex _ [] _ = error "Index not found in replaceInSubtreeWithIndex" depthLeftAndTypeAtR :: TypeRequester -> Int -> Int -> (Int, TypeRequester) depthLeftAndTypeAtR t 1 depthLeft = ((depthLeft - 1), t) depthLeftAndTypeAtR (TR _ (Just le) _) indexLeft depthLeft = depthLeftAndTypeAt le (indexLeft - 1) (depthLeft - 1) depthLeftAndTypeAtR (TR _ Nothing _) indexLeft depthLeft = error "Nothing in depthLeftAndTypeAtR" depthLeftAndTypeAt :: LambdaExpression -> Int -> Int -> (Int, TypeRequester) depthLeftAndTypeAt le@(LambdaSchlucker tr bv) indexLeft depthLeft = depthLeftAndTypeInSubtreeWithIndex (asList le) indexLeft (depthLeft + 1) depthLeftAndTypeAt le indexLeft depthLeft = depthLeftAndTypeInSubtreeWithIndex (asList le) indexLeft depthLeft depthLeftAndTypeInSubtreeWithIndex :: [TypeRequester] -> Int -> Int -> (Int, TypeRequester) depthLeftAndTypeInSubtreeWithIndex (tr : trs) indexLeft depthLeft = if countTrsR tr >= indexLeft then depthLeftAndTypeAtR tr indexLeft depthLeft else depthLeftAndTypeInSubtreeWithIndex trs (indexLeft - countTrsR tr) depthLeft depthLeftAndTypeInSubtreeWithIndex [] indexLeft depthLeft = error "Index not found in depthLeftAndTypeInSubtreeWithIndex" countTrsR :: TypeRequester -> Int countTrsR tr@(TR t lE _) = case lE of Just le -> countTrs le + 1 Nothing -> 1 countTrs :: LambdaExpression -> Int countTrs le = sum (map countTrsR (asList le)) -- Test Stuff testConstInt :: TypeRequester testConstInt = TR (Ref.SomeTypeRep (Ref.TypeRep @Int)) (Just (Symbol ("5") [] [])) [] testIntToClassCons :: TypeRequester testIntToClassCons = TR (Ref.SomeTypeRep (Ref.TypeRep @(Int -> ResClass))) (Just (Symbol ("Class1") [] [])) [] testIntToClassCorrect :: TypeRequester testIntToClassCorrect = TR (Ref.SomeTypeRep (Ref.TypeRep @(Int -> ResClass))) ( Just ( LambdaSchlucker ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) ( Just ( Symbol ("iteClass") [ ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Bool))) ( Just ( Symbol ("eqInt") [ ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Int))) (Just (Var (Ref.SomeTypeRep (Ref.TypeRep @(Int))) 0 [] [])) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Int))) (Just (Constan ("1"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ] [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) (Just (Constan ("Class1"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) ( Just ( Symbol ("iteClass") [ ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Bool))) ( Just ( Symbol ("eqInt") [ ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Int))) (Just (Var (Ref.SomeTypeRep (Ref.TypeRep @(Int))) 0 [] [])) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Int))) (Just (Constan ("2"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ] [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) (Just (Constan ("Class2"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) ( Just ( Symbol ("iteClass") [ ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Bool))) ( Just ( Symbol ("eqInt") [ ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Int))) (Just (Var (Ref.SomeTypeRep (Ref.TypeRep @(Int))) 0 [] [])) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(Int))) (Just (Constan ("3"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ] [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) (Just (Constan ("Class3"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ), ( TR (Ref.SomeTypeRep (Ref.TypeRep @(ResClass))) (Just (Constan ("Class3"))) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ] [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ] [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ] [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) [(Ref.SomeTypeRep (Ref.TypeRep @(Int)))] ) ) [] data ResClass = Class1 | Class2 | Class3 deriving (Enum, Show) eqInt :: Int -> Int -> Bool eqInt a b = a == b iteClass :: Bool -> ResClass -> ResClass -> ResClass iteClass True c _ = c iteClass False _ c = c toLambdaExpressionShort :: TypeRequester -> Text toLambdaExpressionShort (TR _ (Just lambdaExpression) _) = "(" <> eToLambdaExpressionShort lambdaExpression <> ")" toLambdaExpressionShort (TR _ (Nothing) _) = "Invalid Lambda Epr" -- data LambdaExpression = LambdaSpucker TypeRequester TypeRequester BoundVars | LambdaSchlucker TypeRequester BoundVars | Symbol ConVal [TypeRequester] BoundVars | Var TypeRep Int | Constan ConVal eToLambdaExpressionShort :: LambdaExpression -> Text eToLambdaExpressionShort (LambdaSpucker typeRequester1 typeRequester2 boundVars) = "(\\l" <> showSanifid (last boundVars) <> show (count boundVars (last boundVars) - 1) <> " -> " <> toLambdaExpressionShort typeRequester2 <> ") " <> toLambdaExpressionShort typeRequester1 eToLambdaExpressionShort (LambdaSchlucker typeRequester boundVars) = "(\\l" <> showSanifid (last boundVars) <> show (count boundVars (last boundVars) - 1) <> " -> " <> toLambdaExpressionShort typeRequester <> ")" eToLambdaExpressionShort (Symbol (valS) typeRequesters _) = valS <> " " <> (unwords (map toLambdaExpressionShort typeRequesters)) eToLambdaExpressionShort (Var typeRep int typeRequesters _) = "l" <> showSanifid typeRep <> show int <> " " <> (unwords (map toLambdaExpressionShort typeRequesters)) eToLambdaExpressionShort (Constan (valS)) = valS res :: Int -> ResClass res = ((\lInt0 -> ((iteClass ((eqInt ((lInt0) :: (Int)) ((1) :: (Int))) :: (Bool)) ((Class1) :: (ResClass)) ((iteClass ((eqInt ((lInt0) :: (Int)) ((2) :: (Int))) :: (Bool)) ((Class2) :: (ResClass)) ((iteClass ((eqInt ((lInt0) :: (Int)) ((3) :: (Int))) :: (Bool)) ((Class3) :: (ResClass)) ((Class3) :: (ResClass))) :: (ResClass))) :: (ResClass))) :: (ResClass))) :: (Int -> ResClass))