{-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE MultiParamTypeClasses #-} -- | -- Module : GA -- Description : Abstract genetic algorithm -- Copyright : David Pätzel, 2019 -- License : GPL-3 -- Maintainer : David Pätzel -- Stability : experimental -- -- Simplistic abstract definition of a genetic algorithm. -- -- In order to use it for a certain problem, basically, you have to make your -- solution type an instance of 'Individual' and then simply call the 'run' -- function. module GA ( Environment,new, population, mutate, crossover1,crossover, Evaluator, fitness, Individual, GA.run, tournament, N, R, Population, steps, bests, runTests) where import Control.Arrow hiding (first, second) import Data.List.NonEmpty ((<|)) import qualified Data.List.NonEmpty as NE import qualified Data.List.NonEmpty.Extra as NE (appendl) import Data.Random import System.Random.MWC (create) import Pipes import Protolude import Pretty import Test.QuickCheck hiding (sample, shuffle) import Test.QuickCheck.Instances () import Test.QuickCheck.Monadic -- TODO there should be a few 'shuffle's here -- TODO enforce this being > 0 type N = Int type R = Double -- | -- An Environment that Individuals of type i can be created from -- It stores all information required to create and change Individuals correctly -- class (Pretty e, Individual i) => Environment i e where -- | -- Generates a completely random individual. -- new :: e -> RVar i -- | -- Generates a random population of the given size. population :: e -> N -> RVar (Population i) population env n | n <= 0 = undefined | otherwise = NE.fromList <$> replicateM n (new env) mutate :: e -> i -> RVar i crossover1 :: e -> i -> i -> RVar (Maybe (i, i)) -- | -- Performs an n-point crossover. -- -- Given the function for single-point crossover, 'crossover1', this function can -- be derived through recursion and a monad combinator (which is also the default -- implementation). crossover :: e -> N -> i -> i -> RVar (Maybe (i, i)) crossover env n i1 i2 | n <= 0 = return $ Just (i1, i2) | otherwise = do isM <- crossover1 env i1 i2 maybe (return Nothing) (uncurry (crossover env (n - 1))) isM -- | -- An Evaluator that Individuals of type i can be evaluated by -- It stores all information required to evaluate an individuals fitness -- class (Eq e, Individual i) => Evaluator i e where -- | -- An individual's fitness. Higher values are considered “better”. -- -- We explicitely allow fitness values to be have any sign (see, for example, -- 'proportionate1'). fitness :: e -> i -> R class (Pretty i, Eq i) => Individual i -- | -- Populations are just basic non-empty lists. type Population i = NonEmpty i -- | -- Produces offspring circularly from the given list of parents. children :: (Individual i, Environment i e) => e -> -- | The @nX@ of the @nX@-point crossover operator N -> NonEmpty i -> RVar (NonEmpty i) children e _ (i :| []) = (:| []) <$> mutate e i children e nX (i1 :| [i2]) = children2 e nX i1 i2 children e nX (i1 :| i2 : is') = (<>) <$> children2 e nX i1 i2 <*> children e nX (NE.fromList is') children2 :: (Individual i, Environment i e) => e -> N -> i -> i -> RVar (NonEmpty i) children2 e nX i1 i2 = do -- TODO Add crossover probability? (i3, i4) <- fromMaybe (i1, i2) <$> crossover e nX i1 i2 i5 <- mutate e i3 i6 <- mutate e i4 return $ i5 :| [i6] -- | -- The best according to a function; returns up to @k@ results and the remaining -- population. -- -- If @k <= 0@, this returns the best one anyway (as if @k == 1@). bestsBy :: (Individual i) => N -> (i -> R) -> Population i -> (NonEmpty i, [i]) bestsBy k f pop | k <= 0 = bestsBy 1 f pop | otherwise = let (elites, rest) = NE.splitAt k $ map fst $ NE.sortBy (comparing (Down . snd)) $ map (\i -> (i, f i)) pop in (NE.fromList elites, rest) -- | -- The @k@ best individuals in the population when comparing using the supplied -- function. bestsBy' :: (Individual i) => N -> (i -> R) -> Population i -> [i] bestsBy' k f pop | k <= 0 = bestsBy' 1 f pop | otherwise = NE.take k $ map fst $ NE.sortBy (comparing (Down . snd)) $ map (\i -> (i, f i)) pop -- | -- The @k@ worst individuals in the population (and the rest of the population). worst :: (Individual i, Evaluator i e) => e -> N -> Population i -> (NonEmpty i, [i]) worst e k = bestsBy k (negate . fitness e) -- | -- The @k@ best individuals in the population (and the rest of the population). bests :: (Individual i, Evaluator i e) => e -> N -> Population i -> (NonEmpty i, [i]) bests e k = bestsBy k (fitness e) -- TODO add top x percent parent selection (select n guys, sort by fitness first) -- | -- Performs one iteration of a steady state genetic algorithm that in each -- iteration that creates @k@ offspring simply deletes the worst @k@ individuals -- while making sure that the given percentage of elitists survive (at least 1 -- elitist, even if the percentage is 0 or low enough for rounding to result in 0 -- elitists). stepSteady :: (Individual i, Evaluator i eval, Environment i env ) => eval -> env -> -- | Mechanism for selecting parents Selection RVar i -> -- | Number of parents @nParents@ for creating @nParents@ children N -> -- | How many crossover points (the @nX@ in @nX@-point crossover) N -> -- | Elitism ratio @pElite@ R -> Population i -> RVar (Population i) stepSteady eval env select nParents nX pElite pop = do -- TODO Consider keeping the fitness evaluations already done for pop (so we -- only reevaluate iChildren) iParents <- select nParents pop iChildren <- NE.filter (`notElem` pop) <$> children env nX iParents let pop' = pop `NE.appendl` iChildren let eliteSize = floor . (pElite *) . fromIntegral $ NE.length pop let (elitists, rest) = bests eval eliteSize pop' case rest of [] -> return elitists _notEmpty -> -- NOTE 'bests' always returns at least one individual, thus we need this -- slightly ugly branching if length elitists == length pop then return elitists else return $ elitists <> (fst $ bests eval (length pop - length elitists) (NE.fromList rest)) -- | -- Given an Enviroment and Evaluator, runs the GA until the termination criterion is -- fulfilled. -- -- Uses the pipes library to, in each step, 'Pipes.yield' the currently best known -- solution. run :: (Individual i, Evaluator i eval, Environment i env ) => eval -> env -> -- | Mechanism for selecting parents Selection RVar i -> -- | Number of parents @nParents@ for creating @nParents@ children N -> -- | How many crossover points (the @nX@ in @nX@-point crossover) N -> -- | Elitism ratio @pElite@ R -> -- | Population size N -> Termination i -> Producer (Int, R) IO (Population i) run eval env select nParents nX pElite nPop term = do mwc <- lift create let x = \currPop generation -> do currPop' <- lift $ sampleFrom mwc $ currPop if term currPop' generation then return currPop' else do let nextPop = stepSteady eval env select nParents nX pElite currPop' let fBest = fitness eval $ NE.head $ fst $ bests eval 1 currPop' Pipes.yield (generation, fBest) x nextPop (generation + 1) x (population env nPop) 0 -- * Selection mechanisms -- | -- A function generating a monadic action which selects a given number of -- individuals from the given population. type Selection m i = N -> Population i -> m (NonEmpty i) -- | -- Selects @n@ individuals from the population the given mechanism by repeatedly -- selecting a single individual using the given selection mechanism (with -- replacement, so the same individual can be selected multiple times). chain :: (Individual i) => (Population i -> RVar i) -> Selection RVar i -- TODO Ensure that the same individual is not selected multiple times -- (require Selections to partition) chain select1 n pop | n > 1 = (<|) <$> select1 pop <*> chain select1 (n - 1) pop | otherwise = (:|) <$> select1 pop <*> return [] -- | -- Selects @n@ individuals from the population by repeatedly selecting a single -- indidual using a tournament of the given size (the same individual can be -- selected multiple times, see 'chain'). tournament :: (Individual i, Evaluator i e) => e -> N -> Selection RVar i tournament eval nTrnmnt = chain (tournament1 eval nTrnmnt) -- | -- Selects one individual from the population using tournament selection. tournament1 :: (Individual i, Evaluator i e) => e -> -- | Tournament size N -> Population i -> RVar i tournament1 eval nTrnmnt pop -- TODO Use Positive for this constraint | nTrnmnt <= 0 = undefined | otherwise = do paricipants <- withoutReplacement nTrnmnt pop return $ NE.head $ fst $ bests eval 1 paricipants -- | -- Selects @n@ individuals uniformly at random from the population (without -- replacement, so if @n >= length pop@, simply returns @pop@). withoutReplacement :: -- | How many individuals to select N -> Population i -> RVar (NonEmpty i) withoutReplacement 0 _ = undefined withoutReplacement n pop | n >= length pop = return pop | otherwise = fmap (NE.fromList) (shuffleNofM n (length pop) (NE.toList pop)) -- * Termination criteria -- | -- Termination decisions may take into account the current population and the -- current iteration number. type Termination i = Population i -> N -> Bool -- | -- Termination after a number of steps. steps :: N -> Termination i steps tEnd _ t = t >= tEnd -- * Helper functions -- | -- Shuffles a non-empty list. shuffle' :: NonEmpty a -> RVar (NonEmpty a) shuffle' xs@(_ :| []) = return xs shuffle' xs = fmap (NE.fromList) (shuffle (toList xs)) instance Pretty Integer where pretty i = "Found int: " <> show i instance Individual Integer newtype IntTestEnviroment = IntTestEnviroment ((Integer,Integer),Integer) deriving (Eq) -- IntTestEnviroment ((0,100000),10) instance Pretty IntTestEnviroment where -- instance Pretty (Maybe Student) where pretty (IntTestEnviroment ((i,j),k)) = "IntTestEnviroment of Individuals between " <> (show i) <> " and " <> (show j) <> " variance when mutating is " <> (show k) instance Environment Integer IntTestEnviroment where new (IntTestEnviroment ((from,to),_)) = uniform from to mutate (IntTestEnviroment ((from,to),wiggle)) i = uniform (max from (i - wiggle)) (min to (i + wiggle)) crossover1 _ i1 i2 = do i1' <- uniform i1 i2 i2' <- uniform i1 i2 return $ Just (i1',i2') data NoData = NoData deriving (Eq) instance Evaluator Integer NoData where fitness _ = fromIntegral . negate prop_children_asManyAsParents :: N -> NonEmpty Integer -> Property prop_children_asManyAsParents nX is = again $ monadicIO $ do let e = IntTestEnviroment ((0,100000),10) mwc <- Test.QuickCheck.Monadic.run create is' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (children e nX is) return $ counterexample (show is') $ length is' == length is prop_bestsBy_isBestsBy' :: Int -> Population Integer -> Property prop_bestsBy_isBestsBy' k pop = k > 0 ==> monadicIO $ do let a = fst $ bestsBy k (fitness NoData) pop let b = bestsBy' k (fitness NoData) pop assert $ NE.toList a == b prop_bestsBy_lengths :: Int -> Population Integer -> Property prop_bestsBy_lengths k pop = k > 0 ==> monadicIO $ do let (bests, rest) = bestsBy k (fitness NoData) pop assert $ length bests == min k (length pop) && length bests + length rest == length pop prop_stepSteady_constantPopSize :: NonEmpty Integer -> Property prop_stepSteady_constantPopSize pop = forAll ( (,) <$> choose (1, length pop) <*> choose (1, length pop) ) $ \(nParents, nX) -> monadicIO $ do let pElite = 0.1 let eval = NoData let env = IntTestEnviroment ((0,100000),10) mwc <- Test.QuickCheck.Monadic.run create pop' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (stepSteady eval env (tournament eval 4) nParents nX pElite pop) return . counterexample (show pop') $ length pop' == length pop prop_tournament_selectsN :: Int -> Int -> NonEmpty Integer -> Property prop_tournament_selectsN nTrnmnt n pop = 0 < nTrnmnt && nTrnmnt < length pop && 0 < n ==> monadicIO $ do mwc <- Test.QuickCheck.Monadic.run create pop' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (tournament NoData 2 n pop) assert $ length pop' == n prop_withoutReplacement_selectsN :: Int -> NonEmpty a -> Property prop_withoutReplacement_selectsN n pop = 0 < n && n <= length pop ==> monadicIO (do mwc <- Test.QuickCheck.Monadic.run create pop' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (withoutReplacement n pop) assert $ length pop' == n) prop_shuffle_length :: NonEmpty a -> Property prop_shuffle_length xs = monadicIO(do mwc <- Test.QuickCheck.Monadic.run create xs' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (shuffle' xs) assert $ length xs' == length xs) runTests :: IO Bool runTests = $quickCheckAll return []