{-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-| Module : GA Description : Abstract genetic algorithm Copyright : David Pätzel, 2019 License : GPL-3 Maintainer : David Pätzel Stability : experimental Simplistic abstract definition of a genetic algorithm. In order to use it for a certain problem, basically, you have to make your solution type an instance of 'Individual' and then simply call the 'run' function. -} module GA where import Control.Arrow hiding (first) import qualified Data.List as L import Data.List.NonEmpty ((<|)) import qualified Data.List.NonEmpty as NE import qualified Data.List.NonEmpty.Extra as NE (appendl, sortOn) import Data.Random import Data.Random.Distribution.Categorical import Data.Random.Sample import Pipes import Pretty import Protolude import Test.QuickCheck hiding (sample, shuffle) import Test.QuickCheck.Instances import Test.QuickCheck.Monadic -- TODO there should be a few 'shuffle's here -- TODO enforce this being > 0 type N = Int type R = Double class Eq i => Individual i where {-| Generates a completely random individual given an existing individual. We have to add @i@ here as a parameter in order to be able to inject stuff. -} -- TODO This (and also, Seminar.I, which contains an ugly parameter @p@) has -- to be done nicer! new :: (MonadRandom m) => i -> m i {-| Generates a random population of the given size. -} population :: (MonadRandom m) => N -> i -> m (Population i) population n i | n <= 0 = undefined | otherwise = NE.fromList <$> replicateM n (new i) mutate :: (MonadRandom m) => i -> m i crossover1 :: (MonadRandom m) => i -> i -> m (Maybe (i, i)) fitness :: (Monad m) => i -> m R {-| Performs an n-point crossover. Given the function for single-point crossover, 'crossover1', this function can be derived through recursion and a monad combinator (which is also the default implementation). -} crossover :: (MonadRandom m) => N -> i -> i -> m (Maybe (i, i)) crossover n i1 i2 | n <= 0 = return $ Just (i1, i2) | otherwise = do isM <- crossover1 i1 i2 maybe (return Nothing) (uncurry (crossover (n - 1))) isM {-| Needed for QuickCheck tests, for now, a very simplistic implementation should suffice. -} instance Individual Integer where new _ = sample $ uniform 0 (0 + 100000) mutate i = sample $ uniform (i - 10) (i + 10) crossover1 i1 i2 = return $ Just (i1 - i2, i2 - i1) fitness = return . fromIntegral . negate {-| Populations are just basic non-empty lists. -} type Population i = NonEmpty i {-| Selects one individual from the population using proportionate selection. -} proportionate1 :: (Individual i, MonadRandom m) => Population i -> m i proportionate1 pop = sequence ((\i -> (,i) <$> fitness i) <$> pop) >>= sample . fromWeightedList . NE.toList {-| Selects @n@ individuals from the population using proportionate selection. -} proportionate :: (Individual i, MonadRandom m) => N -> Population i -> m (NonEmpty i) proportionate n pop | n > 1 = (<|) <$> proportionate1 pop <*> proportionate (n - 1) pop | otherwise = (:|) <$> proportionate1 pop <*> return [] {-| Produces offspring circularly from the given list of parents. -} children :: (Individual i, MonadRandom m) => N -- ^ The @nX@ of the @nX@-point crossover operator -> NonEmpty i -> m (NonEmpty i) children _ (i :| []) = (:| []) <$> mutate i children nX (i1 :| [i2]) = children2 nX i1 i2 children nX (i1 :| i2 : is') = (<>) <$> children2 nX i1 i2 <*> children nX (NE.fromList is') children2 :: (Individual i, MonadRandom m) => N -> i -> i -> m (NonEmpty i) children2 nX i1 i2 = do -- TODO Add crossover probability? (i3, i4) <- fromMaybe (i1, i2) <$> crossover nX i1 i2 i5 <- mutate i3 i6 <- mutate i4 return $ i5 :| [i6] {-| The best according to a function, return up to @k@ results and the remaining population. If @k <= 0@, this returns the best one anyway (as if @k == 1@). -} bestsBy :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m (NonEmpty i, [i]) bestsBy k f pop@(i :| pop') | k <= 0 = bestsBy 1 f pop | otherwise = foldM run (i :| [], []) pop' where run (bests, rest) i = ((NE.fromList . NE.take k) &&& (rest <>) . NE.drop k) <$> sorted (i <| bests) sorted = fmap (fmap fst . NE.sortOn (Down . snd)) . traverse (\i -> (i,) <$> f i) {-| The @k@ best individuals in the population when comparing using the supplied function. -} bestsBy' :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i] bestsBy' k f = fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd))) . traverse (\i -> (i,) <$> f i) prop_bestsBy_isBestsBy' k pop = k > 0 ==> monadicIO $ do a <- fst <$> bestsBy k fitness pop b <- bestsBy' k fitness pop assert $ NE.toList a == b prop_bestsBy_lengths k pop = k > 0 ==> monadicIO $ do (bests, rest) <- bestsBy k fitness pop assert $ length bests == min k (length pop) && length bests + length rest == length pop {-| The @k@ worst individuals in the population. -} worst :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i]) worst = flip bestsBy (fmap negate . fitness) {-| The @k@ best individuals in the population. -} bests :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i]) bests = flip bestsBy fitness -- TODO add top x percent parent selection (select n guys, sort by fitness first) {-| Performs one iteration of the genetic algorithm. -} step :: (Individual i, MonadRandom m, Monad m) => N -- ^ number of parents @nParents@ for creating @nParents@ children -> N -- ^ how many crossover points (the @nX@ in @nX@-point crossover) -> R -- ^ elitism ratio @pElite@ -> Population i -> m (Population i) -- TODO parametrize selection: 'proportionate' and 'worst' step nParents nX pElite pop = do iParents <- proportionate nParents pop iChildren <- NE.filter (`notElem` pop) <$> children nX iParents let pop' = pop `NE.appendl` iChildren (iBests, iRests) <- bests bestN pop' case iRests of [] -> return iBests (i : iRests') -> do (_, iRests') <- worst (length iBests + length iRests - length pop) (i :| iRests') return $ iBests `NE.appendl` iRests' where bestN = round . (pElite *) . fromIntegral $ NE.length pop -- TODO prop_step_size = {-| Given an initial population, runs the GA until the termination criterion is fulfilled. Uses the pipes library to, in each step, 'Pipes.yield' the currently best known solution. -} run :: (Individual i, Monad m, MonadRandom m) => N -- ^ number of parents @nParents@ for creating @nParents@ children -> N -- ^ how many crossover points (the @nX@ in @nX@-point crossover) -> R -- ^ elitism ratio @pElite@ -> Population i -> Termination i -> Producer (Int, R) m (Population i) run nParents nX pElite pop term = step' 0 pop where step' t pop | term pop t = return pop | otherwise = do pop' <- lift $ step nParents nX pElite pop (iBests, _) <- lift $ bests 1 pop' fs <- lift . sequence $ fitness <$> iBests let fBest = NE.head fs yield (t, fBest) step' (t + 1) pop' -- * Termination criteria {-| Termination decisions may take into account the current population and the current iteration number. -} type Termination i = Population i -> N -> Bool {-| Termination after a number of steps. -} steps :: N -> Termination i steps tEnd _ t = t >= tEnd -- * Helper functions {-| Shuffles a non-empty list. -} shuffle' :: (MonadRandom m) => NonEmpty a -> m (NonEmpty a) shuffle' xs@(x :| []) = return xs shuffle' xs = do i <- sample . uniform 0 $ NE.length xs - 1 -- slightly unsafe (!!) used here so deletion is faster let x = xs NE.!! i xs' <- sample . shuffle $ deleteI i xs return $ x :| xs' where deleteI i xs = fst (NE.splitAt i xs) ++ snd (NE.splitAt (i + 1) xs) prop_shuffle_length xs = monadicIO $ do xs' <- lift $ shuffle' xs assert $ length xs' == length xs return [] runTests = $quickCheckAll