haga/src/GA.hs

390 lines
12 KiB
Haskell
Raw Normal View History

{-# LANGUAGE DeriveFoldable #-}
2019-10-17 18:23:19 +02:00
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}
2019-10-22 08:14:16 +02:00
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-|
Module : GA
Description : Abstract genetic algorithm
Copyright : David Pätzel, 2019
License : GPL-3
Maintainer : David Pätzel <david.paetzel@posteo.de>
Stability : experimental
Simplistic abstract definition of a genetic algorithm.
In order to use it for a certain problem, basically, you have to make your
solution type an instance of 'Individual' and then simply call the 'run'
function.
-}
module GA where
2020-05-02 16:10:24 +02:00
import Control.Arrow hiding (first, second)
import Data.List.NonEmpty ((<|))
import qualified Data.List.NonEmpty as NE
import qualified Data.List.NonEmpty.Extra as NE (appendl, sortOn)
import Data.Random
import Pipes
2019-10-17 18:23:19 +02:00
import Protolude
import Test.QuickCheck hiding (sample, shuffle)
import Test.QuickCheck.Instances ()
2019-10-22 08:14:16 +02:00
import Test.QuickCheck.Monadic
2019-10-22 06:53:53 +02:00
-- TODO there should be a few 'shuffle's here
-- TODO enforce this being > 0
type N = Int
2019-10-17 18:23:19 +02:00
type R = Double
class Eq i => Individual i where
2019-10-17 18:23:19 +02:00
{-|
Generates a completely random individual given an existing individual.
2019-10-17 18:23:19 +02:00
We have to add @i@ here as a parameter in order to be able to inject stuff.
-}
-- TODO This (and also, Seminar.I, which contains an ugly parameter @p@) has
-- to be done nicer!
new :: (MonadRandom m) => i -> m i
2019-10-17 18:23:19 +02:00
{-|
Generates a random population of the given size.
-}
population :: (MonadRandom m) => N -> i -> m (Population i)
population n i
| n <= 0 = undefined
| otherwise = NE.fromList <$> replicateM n (new i)
2019-10-17 18:23:19 +02:00
mutate :: (MonadRandom m) => i -> m i
2019-10-17 18:23:19 +02:00
crossover1 :: (MonadRandom m) => i -> i -> m (Maybe (i, i))
2019-10-17 18:23:19 +02:00
2020-05-02 16:10:24 +02:00
{-|
An individual's fitness. Higher values are considered better.
We explicitely allow fitness values to be have any sign (see, for example,
'proportionate1').
-}
fitness :: (Monad m) => i -> m R
2019-10-17 18:23:19 +02:00
{-|
Performs an n-point crossover.
2019-10-17 18:23:19 +02:00
Given the function for single-point crossover, 'crossover1', this function can
be derived through recursion and a monad combinator (which is also the default
implementation).
-}
crossover :: (MonadRandom m) => N -> i -> i -> m (Maybe (i, i))
crossover n i1 i2
2019-10-17 18:23:19 +02:00
| n <= 0 = return $ Just (i1, i2)
| otherwise = do
2019-10-17 18:23:19 +02:00
isM <- crossover1 i1 i2
maybe (return Nothing) (uncurry (crossover (n - 1))) isM
{-|
Needed for QuickCheck tests, for now, a very simplistic implementation should
suffice.
-}
instance Individual Integer where
new _ = sample $ uniform 0 (0 + 100000)
mutate i = sample $ uniform (i - 10) (i + 10)
crossover1 i1 i2 = return $ Just (i1 - i2, i2 - i1)
fitness = return . fromIntegral . negate
{-|
Populations are just basic non-empty lists.
-}
type Population i = NonEmpty i
2019-10-22 08:14:16 +02:00
{-|
Produces offspring circularly from the given list of parents.
-}
children
:: (Individual i, MonadRandom m)
=> N -- ^ The @nX@ of the @nX@-point crossover operator
-> NonEmpty i
-> m (NonEmpty i)
children _ (i :| []) = (:| []) <$> mutate i
children nX (i1 :| [i2]) = children2 nX i1 i2
children nX (i1 :| i2 : is') =
(<>) <$> children2 nX i1 i2 <*> children nX (NE.fromList is')
prop_children_asManyAsParents
:: (Individual a, Show a) => N -> NonEmpty a -> Property
2020-05-02 16:10:24 +02:00
prop_children_asManyAsParents nX is =
again
$ monadicIO
$ do
is' <- lift $ children nX is
return $ counterexample (show is') $ length is' == length is
children2 :: (Individual i, MonadRandom m) => N -> i -> i -> m (NonEmpty i)
children2 nX i1 i2 = do
-- TODO Add crossover probability?
(i3, i4) <- fromMaybe (i1, i2) <$> crossover nX i1 i2
i5 <- mutate i3
i6 <- mutate i4
return $ i5 :| [i6]
{-|
2020-05-02 16:13:18 +02:00
The best according to a function; returns up to @k@ results and the remaining
population.
If @k <= 0@, this returns the best one anyway (as if @k == 1@).
-}
bestsBy
:: (Individual i, Monad m)
=> N
-> (i -> m R)
-> Population i
-> m (NonEmpty i, [i])
bestsBy k f pop@(i :| pop')
| k <= 0 = bestsBy 1 f pop
| otherwise = foldM run (i :| [], []) pop'
where
run (bests, rest) i =
((NE.fromList . NE.take k) &&& (rest <>) . NE.drop k)
<$> sorted (i <| bests)
sorted =
fmap (fmap fst . NE.sortOn (Down . snd)) . traverse (\i -> (i,) <$> f i)
{-|
2019-10-17 18:23:19 +02:00
The @k@ best individuals in the population when comparing using the supplied
function.
-}
bestsBy' :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i]
bestsBy' k f =
2019-10-17 18:23:19 +02:00
fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd)))
. traverse (\i -> (i,) <$> f i)
prop_bestsBy_isBestsBy' :: Individual a => Int -> Population a -> Property
prop_bestsBy_isBestsBy' k pop =
k > 0
==> monadicIO
$ do
a <- fst <$> bestsBy k fitness pop
b <- bestsBy' k fitness pop
assert $ NE.toList a == b
prop_bestsBy_lengths :: Individual a => Int -> Population a -> Property
2020-01-07 09:17:39 +01:00
prop_bestsBy_lengths k pop =
k > 0 ==> monadicIO $ do
(bests, rest) <- bestsBy k fitness pop
assert
$ length bests == min k (length pop) && length bests + length rest == length pop
2019-10-17 18:23:19 +02:00
{-|
2020-05-02 16:13:18 +02:00
The @k@ worst individuals in the population (and the rest of the population).
2019-10-17 18:23:19 +02:00
-}
worst :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
worst = flip bestsBy (fmap negate . fitness)
2019-10-17 18:23:19 +02:00
{-|
2020-05-02 16:13:18 +02:00
The @k@ best individuals in the population (and the rest of the population).
2019-10-17 18:23:19 +02:00
-}
bests :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
bests = flip bestsBy fitness
-- TODO add top x percent parent selection (select n guys, sort by fitness first)
{-|
Performs one iteration of a steady state genetic algorithm that in each
iteration that creates @k@ offspring simply deletes the worst @k@ individuals
while making sure that the given percentage of elitists survive (at least 1
elitist, even if the percentage is 0 or low enough for rounding to result in 0
elitists).
-}
stepSteady
:: (Individual i, MonadRandom m, Monad m)
=> Selection m i -- ^ Mechanism for selecting parents
-> N -- ^ Number of parents @nParents@ for creating @nParents@ children
-> N -- ^ How many crossover points (the @nX@ in @nX@-point crossover)
-> R -- ^ Elitism ratio @pElite@
-> Population i
-> m (Population i)
stepSteady select nParents nX pElite pop = do
-- TODO Consider keeping the fitness evaluations already done for pop (so we
-- only reevaluate iChildren)
iParents <- select nParents pop
iChildren <- NE.filter (`notElem` pop) <$> children nX iParents
let pop' = pop `NE.appendl` iChildren
2020-05-02 16:10:24 +02:00
(elitists, rest) <- bests nBest pop'
case rest of
[] -> return elitists
(i : is) ->
-- NOTE 'bests' always returns at least one individual, thus we need this
-- slightly ugly branching
if length elitists == length pop
then return elitists
else
(elitists <>)
. fst <$> bests (length pop - length elitists) (i :| is)
where
2020-05-02 16:10:24 +02:00
nBest = floor . (pElite *) . fromIntegral $ NE.length pop
prop_stepSteady_constantPopSize
:: (Individual a, Show a) => NonEmpty a -> Property
2020-05-02 16:10:24 +02:00
prop_stepSteady_constantPopSize pop =
forAll
( (,)
<$> choose (1, length pop)
<*> choose (1, length pop)
)
$ \(nParents, nX) -> monadicIO $ do
let pElite = 0.1
pop' <- lift $ stepSteady (tournament 4) nParents nX pElite pop
return . counterexample (show pop') $ length pop' == length pop
2019-10-17 18:23:19 +02:00
{-|
Given an initial population, runs the GA until the termination criterion is
fulfilled.
Uses the pipes library to, in each step, 'Pipes.yield' the currently best known
solution.
2019-10-17 18:23:19 +02:00
-}
run
:: (Individual i, Monad m, MonadRandom m)
=> Selection m i -- ^ Mechanism for selecting parents
-> N -- ^ Number of parents @nParents@ for creating @nParents@ children
-> N -- ^ How many crossover points (the @nX@ in @nX@-point crossover)
-> R -- ^ Elitism ratio @pElite@
2019-10-17 18:23:19 +02:00
-> Population i
-> Termination i
-> Producer (Int, R) m (Population i)
run select nParents nX pElite pop term = step' 0 pop
where
step' t pop
| term pop t = return pop
| otherwise = do
pop' <- lift $ stepSteady select nParents nX pElite pop
(iBests, _) <- lift $ bests 1 pop'
fs <- lift . sequence $ fitness <$> iBests
let fBest = NE.head fs
yield (t, fBest)
step' (t + 1) pop'
-- * Selection mechanisms
{-|
A function generating a monadic action which selects a given number of
individuals from the given population.
-}
type Selection m i = N -> Population i -> m (NonEmpty i)
{-|
Selects @n@ individuals from the population the given mechanism by repeatedly
selecting a single individual using the given selection mechanism (with
replacement, so the same individual can be selected multiple times).
-}
chain
:: (Individual i, MonadRandom m)
=> (Population i -> m i)
-> Selection m i
-- TODO Ensure that the same individual is not selected multiple times
-- (require Selections to partition)
chain select1 n pop
| n > 1 = (<|) <$> select1 pop <*> chain select1 (n - 1) pop
| otherwise = (:|) <$> select1 pop <*> return []
{-|
Selects @n@ individuals from the population by repeatedly selecting a single
indidual using a tournament of the given size (the same individual can be
selected multiple times, see 'chain').
-}
tournament :: (Individual i, MonadRandom m) => N -> Selection m i
tournament nTrnmnt = chain (tournament1 nTrnmnt)
prop_tournament_selectsN :: Individual a => Int -> Int -> NonEmpty a -> Property
prop_tournament_selectsN nTrnmnt n pop =
0 < nTrnmnt && nTrnmnt < length pop
&& 0 < n ==> monadicIO
$ do
pop' <- lift $ tournament 2 n pop
assert $ length pop' == n
{-|
Selects one individual from the population using tournament selection.
-}
tournament1
:: (Individual i, MonadRandom m)
=> N
-- ^ Tournament size
-> Population i
-> m i
tournament1 nTrnmnt pop
-- TODO Use Positive for this constraint
| nTrnmnt <= 0 = undefined
| otherwise = trnmnt >>= fmap (NE.head . fst) . bests 1
where
trnmnt = withoutReplacement nTrnmnt pop
{-|
Selects @n@ individuals uniformly at random from the population (without
replacement, so if @n >= length pop@, simply returns @pop@).
-}
withoutReplacement
:: (MonadRandom m)
=> N
-- ^ How many individuals to select
-> Population i
-> m (NonEmpty i)
withoutReplacement 0 _ = undefined
withoutReplacement n pop
| n >= length pop = return pop
| otherwise =
fmap NE.fromList . sample . shuffleNofM n (length pop) $ NE.toList pop
prop_withoutReplacement_selectsN :: Int -> NonEmpty a -> Property
prop_withoutReplacement_selectsN n pop =
0 < n && n <= length pop ==> monadicIO $ do
pop' <- lift $ withoutReplacement n pop
assert $ length pop' == n
-- * Termination criteria
{-|
Termination decisions may take into account the current population and the
current iteration number.
-}
type Termination i = Population i -> N -> Bool
{-|
Termination after a number of steps.
-}
steps :: N -> Termination i
steps tEnd _ t = t >= tEnd
2019-10-22 08:14:16 +02:00
-- * Helper functions
{-|
Shuffles a non-empty list.
-}
shuffle' :: (MonadRandom m) => NonEmpty a -> m (NonEmpty a)
shuffle' xs@(_ :| []) = return xs
shuffle' xs = do
i <- sample . uniform 0 $ NE.length xs - 1
-- slightly unsafe (!!) used here so deletion is faster
let x = xs NE.!! i
xs' <- sample . shuffle $ deleteI i xs
return $ x :| xs'
where
deleteI i xs = fst (NE.splitAt i xs) ++ snd (NE.splitAt (i + 1) xs)
prop_shuffle_length :: NonEmpty a -> Property
prop_shuffle_length xs = monadicIO $ do
xs' <- lift $ shuffle' xs
assert $ length xs' == length xs
2019-10-22 08:14:16 +02:00
return []
runTests :: IO Bool
2019-10-22 08:14:16 +02:00
runTests = $quickCheckAll