Cleanup existing GA code
This commit is contained in:
		
							parent
							
								
									296b2e218c
								
							
						
					
					
						commit
						49b105f42a
					
				
							
								
								
									
										115
									
								
								src/GA.hs
									
									
									
									
									
								
							
							
						
						
									
										115
									
								
								src/GA.hs
									
									
									
									
									
								
							@ -1,17 +1,18 @@
 | 
			
		||||
{-# LANGUAGE DeriveFunctor #-}
 | 
			
		||||
{-# LANGUAGE DeriveFoldable #-}
 | 
			
		||||
{-# LANGUAGE DeriveFunctor #-}
 | 
			
		||||
{-# LANGUAGE DeriveTraversable #-}
 | 
			
		||||
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
 | 
			
		||||
{-# LANGUAGE NoImplicitPrelude #-}
 | 
			
		||||
{-# LANGUAGE TupleSections #-}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
module GA where
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import Protolude
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
-- NEXT commit everything
 | 
			
		||||
-- TODO add factory floor optimizer:
 | 
			
		||||
-- [2019-07-15] GA that optimizes factory floor
 | 
			
		||||
--   - data: graph of workstations with edge weights being the number of walks between them
 | 
			
		||||
--   - desired: optimal configuration that reduces crossings
 | 
			
		||||
--   - space: 15 workstations that can be positioned in a 20 x 20 space
 | 
			
		||||
import Control.Arrow hiding (first)
 | 
			
		||||
import qualified Data.List as L
 | 
			
		||||
import Data.List.NonEmpty ((<|))
 | 
			
		||||
@ -19,78 +20,85 @@ import qualified Data.List.NonEmpty as NE
 | 
			
		||||
import Data.Random
 | 
			
		||||
import Data.Random.Distribution.Categorical
 | 
			
		||||
import Data.Random.Sample
 | 
			
		||||
import Pretty
 | 
			
		||||
import Protolude
 | 
			
		||||
import Test.QuickCheck hiding (sample, shuffle)
 | 
			
		||||
import Test.QuickCheck.Instances
 | 
			
		||||
import Test.QuickCheck.Monadic
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import Pretty
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
-- TODO Enforce this being > 0
 | 
			
		||||
type N = Int
 | 
			
		||||
type R = Float
 | 
			
		||||
 | 
			
		||||
type R = Double
 | 
			
		||||
 | 
			
		||||
-- alternative could be
 | 
			
		||||
-- data I a
 | 
			
		||||
--   = I
 | 
			
		||||
--       { mutate :: m (I a),
 | 
			
		||||
--         crossover1 :: (MonadRandom m) => I a -> m (Maybe (I a, I a))
 | 
			
		||||
--       }
 | 
			
		||||
class Eq i => Individual i where
 | 
			
		||||
 | 
			
		||||
  {-|
 | 
			
		||||
  Generates a completely random individual given an existing individual.
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  We have to add @i@ here as a parameter in order to be able to inject stuff.
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  TODO This (and also, Seminar.I, which contains an ugly parameter @p@) has to
 | 
			
		||||
  be done nicer!
 | 
			
		||||
  -}
 | 
			
		||||
  new :: (MonadRandom m) => i -> m i
 | 
			
		||||
 | 
			
		||||
  {-|
 | 
			
		||||
  Generates a random population of the given size.
 | 
			
		||||
  -}
 | 
			
		||||
  population :: (MonadRandom m) => N -> i -> m (Population i)
 | 
			
		||||
  population 0 _ = undefined
 | 
			
		||||
  population n i = Pop . NE.fromList <$> replicateM n (new i)
 | 
			
		||||
 | 
			
		||||
  mutate :: (MonadRandom m) => i -> m i
 | 
			
		||||
 | 
			
		||||
  crossover1 :: (MonadRandom m) => i -> i -> m (Maybe (i, i))
 | 
			
		||||
 | 
			
		||||
  -- TODO Perhaps rather add a 'features' function (and parametrize select1 etc. with fitness function)?
 | 
			
		||||
  fitness :: (Monad m) => i -> m R
 | 
			
		||||
 | 
			
		||||
  {-|
 | 
			
		||||
  Performs an n-point crossover.
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  Given the function for single-point crossover, 'crossover1', this function can
 | 
			
		||||
  be derived through recursion and a monad combinator (which is also the default
 | 
			
		||||
  implementation).
 | 
			
		||||
  -}
 | 
			
		||||
  crossover :: (MonadRandom m) => Int -> i -> i -> m (Maybe (i, i))
 | 
			
		||||
  crossover n i1 i2
 | 
			
		||||
    | n <= 0    = return $ Just (i1, i2)
 | 
			
		||||
    | n <= 0 = return $ Just (i1, i2)
 | 
			
		||||
    | otherwise = do
 | 
			
		||||
        isM <- crossover1 i1 i2
 | 
			
		||||
        maybe (return Nothing) (uncurry (crossover (n - 1))) isM
 | 
			
		||||
      isM <- crossover1 i1 i2
 | 
			
		||||
      maybe (return Nothing) (uncurry (crossover (n - 1))) isM
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
-- TODO Do i want to model the population using Data.Vector.Sized?
 | 
			
		||||
-- TODO Perhaps use Data.Vector.Sized for the population?
 | 
			
		||||
{-|
 | 
			
		||||
It would be nice to model populations as GADTs but then no functor instance were
 | 
			
		||||
possible:
 | 
			
		||||
> data Population a where
 | 
			
		||||
>  Pop :: Individual a => NonEmpty a -> Population a
 | 
			
		||||
-}
 | 
			
		||||
newtype Population a = Pop { unPop :: NonEmpty a }
 | 
			
		||||
newtype Population a = Pop {unPop :: NonEmpty a}
 | 
			
		||||
  deriving (Foldable, Functor, Semigroup, Show, Traversable)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
instance (Arbitrary i) => Arbitrary (Population i) where
 | 
			
		||||
  arbitrary = Pop <$> arbitrary
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Selects one individual from the population using proportionate selection.
 | 
			
		||||
-}
 | 
			
		||||
proportionate1 :: (Individual i, MonadRandom m) => Population i -> m i
 | 
			
		||||
proportionate1 pop =
 | 
			
		||||
  sequence ((\ i -> (, i) <$> fitness i) <$> pop) >>=
 | 
			
		||||
    sample . fromWeightedList . NE.toList . unPop
 | 
			
		||||
-- TODO Perhaps use stochastic acceptance for performance?
 | 
			
		||||
  sequence ((\i -> (,i) <$> fitness i) <$> pop)
 | 
			
		||||
    >>= sample . fromWeightedList . NE.toList . unPop
 | 
			
		||||
 | 
			
		||||
-- TODO Perhaps use stochastic acceptance for performance?
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Selects @n@ individuals from the population using proportionate selection.
 | 
			
		||||
@ -98,12 +106,13 @@ Selects @n@ individuals from the population using proportionate selection.
 | 
			
		||||
-- TODO Perhaps use Data.Vector.Sized for the result?
 | 
			
		||||
proportionate
 | 
			
		||||
  :: (Individual i, MonadRandom m)
 | 
			
		||||
  => N -> Population i -> m (NonEmpty i)
 | 
			
		||||
  => N
 | 
			
		||||
  -> Population i
 | 
			
		||||
  -> m (NonEmpty i)
 | 
			
		||||
proportionate n pop
 | 
			
		||||
  | n > 1 = (<|) <$> proportionate1 pop <*> proportionate (n - 1) pop
 | 
			
		||||
  | otherwise = (:|) <$> proportionate1 pop <*> return []
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Produce offspring circularly.
 | 
			
		||||
-}
 | 
			
		||||
@ -113,7 +122,6 @@ children nX (i1 :| [i2]) = children2 nX i1 i2
 | 
			
		||||
children nX (i1 :| i2 : is') =
 | 
			
		||||
  (<>) <$> children2 nX i1 i2 <*> children nX (NE.fromList is')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
children2 :: (Individual i, MonadRandom m) => N -> i -> i -> m (NonEmpty i)
 | 
			
		||||
children2 nX i1 i2 = do
 | 
			
		||||
  -- TODO Add crossover probability?
 | 
			
		||||
@ -122,43 +130,63 @@ children2 nX i1 i2 = do
 | 
			
		||||
  i6 <- mutate i4
 | 
			
		||||
  return $ i5 :| [i6]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
The @k@ worst individuals in the population.
 | 
			
		||||
The @k@ best individuals in the population when comparing using the supplied
 | 
			
		||||
function.
 | 
			
		||||
-}
 | 
			
		||||
bestBy :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i]
 | 
			
		||||
bestBy k f =
 | 
			
		||||
  fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd))) .
 | 
			
		||||
    traverse (\ i -> (i, ) <$> f i) . unPop
 | 
			
		||||
 | 
			
		||||
  fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd)))
 | 
			
		||||
    . traverse (\i -> (i,) <$> f i)
 | 
			
		||||
    . unPop
 | 
			
		||||
 | 
			
		||||
-- TODO no trivial instance for worst
 | 
			
		||||
-- prop_worstLength :: Int -> Population Int -> Property
 | 
			
		||||
-- prop_worstLength k pop = monadicIO $ (k ==) . length <$> worst k pop
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
The @k@ worst individuals in the population.
 | 
			
		||||
-}
 | 
			
		||||
worst :: (Individual i, Monad m) => N -> Population i -> m [i]
 | 
			
		||||
worst = flip bestBy (fmap (1 /) . fitness)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
The @k@ best individuals in the population.
 | 
			
		||||
-}
 | 
			
		||||
bests :: (Individual i, Monad m) => N -> Population i -> m [i]
 | 
			
		||||
bests = flip bestBy fitness
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Runs the GA and prints the @nResult@ best individuals.
 | 
			
		||||
-}
 | 
			
		||||
ga' nParents nX pop term nResult = do
 | 
			
		||||
  pop <- ga nParents nX pop term
 | 
			
		||||
  res <- bests nResult pop
 | 
			
		||||
  sequence $ putText . pretty <$> res
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Runs the GA, using in each iteration
 | 
			
		||||
 - @nParents@ parents for creating @nParents@ children and
 | 
			
		||||
 - @nX@-point crossover.
 | 
			
		||||
 | 
			
		||||
It terminates after the termination criterion is fulfilled.
 | 
			
		||||
-}
 | 
			
		||||
ga
 | 
			
		||||
  :: (Individual i, MonadRandom m, Monad m)
 | 
			
		||||
  => N -> N -> Population i -> Termination i -> m (Population i)
 | 
			
		||||
  => N
 | 
			
		||||
  -> N
 | 
			
		||||
  -> Population i
 | 
			
		||||
  -> Termination i
 | 
			
		||||
  -> m (Population i)
 | 
			
		||||
ga nParents nX pop term = ga' nParents nX pop term 0
 | 
			
		||||
  where
 | 
			
		||||
    ga'
 | 
			
		||||
      :: (Individual i, MonadRandom m, Monad m)
 | 
			
		||||
      => N -> N -> Population i -> Termination i -> N -> m (Population i)
 | 
			
		||||
      => N
 | 
			
		||||
      -> N
 | 
			
		||||
      -> Population i
 | 
			
		||||
      -> Termination i
 | 
			
		||||
      -> N
 | 
			
		||||
      -> m (Population i)
 | 
			
		||||
    ga' nParents nX pop term t = do
 | 
			
		||||
      -- trace (show t <> ": " <> show (length pop)) $ return ()
 | 
			
		||||
      is <- proportionate nParents pop
 | 
			
		||||
@ -172,22 +200,17 @@ ga nParents nX pop term = ga' nParents nX pop term 0
 | 
			
		||||
      -- replace fitness proportionally
 | 
			
		||||
      -- let pop' = Pop <$> proportionate (length pop) (pop <> Pop is')
 | 
			
		||||
      if term pop' t
 | 
			
		||||
        then
 | 
			
		||||
          return pop'
 | 
			
		||||
        else
 | 
			
		||||
          ga' nParents nX pop' term (t + 1)
 | 
			
		||||
 | 
			
		||||
        then return pop'
 | 
			
		||||
        else ga' nParents nX pop' term (t + 1)
 | 
			
		||||
 | 
			
		||||
-- * Termination criteria
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Termination decisions may take into account the current population and the
 | 
			
		||||
current iteration number.
 | 
			
		||||
-}
 | 
			
		||||
type Termination i = Population i -> N -> Bool
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Termination after a number of steps.
 | 
			
		||||
-}
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user