Implement bestsBy properly
Only needs something in O(n) now instead of a lot more. Also, returns the complement.
This commit is contained in:
		
							parent
							
								
									0044b6cc18
								
							
						
					
					
						commit
						bcf11d61e1
					
				
							
								
								
									
										118
									
								
								src/GA.hs
									
									
									
									
									
								
							
							
						
						
									
										118
									
								
								src/GA.hs
									
									
									
									
									
								
							@ -78,17 +78,18 @@ class Eq i => Individual i where
 | 
			
		||||
      isM <- crossover1 i1 i2
 | 
			
		||||
      maybe (return Nothing) (uncurry (crossover (n - 1))) isM
 | 
			
		||||
 | 
			
		||||
-- TODO Perhaps use Data.Vector.Sized for the population?
 | 
			
		||||
{-|
 | 
			
		||||
It would be nice to model populations as GADTs but then no functor instance were
 | 
			
		||||
possible:
 | 
			
		||||
> data Population a where
 | 
			
		||||
>  Pop :: Individual a => NonEmpty a -> Population a
 | 
			
		||||
Needed for QuickCheck tests, very simplistic implementation.
 | 
			
		||||
-}
 | 
			
		||||
instance Individual Integer where
 | 
			
		||||
 | 
			
		||||
instance (Arbitrary i) => Arbitrary (Population i) where
 | 
			
		||||
  arbitrary = Pop <$> arbitrary
 | 
			
		||||
  new _ = sample $ uniform 0 (0 + 100000)
 | 
			
		||||
 | 
			
		||||
  mutate i = sample $ uniform (i - 10) (i + 10)
 | 
			
		||||
 | 
			
		||||
  crossover1 i1 i2 = return $ Just (i1 - i2, i2 - i1)
 | 
			
		||||
 | 
			
		||||
  fitness = return . fromIntegral . negate
 | 
			
		||||
 | 
			
		||||
type Population i = NonEmpty i
 | 
			
		||||
 | 
			
		||||
@ -129,74 +130,107 @@ children2 nX i1 i2 = do
 | 
			
		||||
  i6 <- mutate i4
 | 
			
		||||
  return $ i5 :| [i6]
 | 
			
		||||
 | 
			
		||||
-- TODO there should be some shuffle here
 | 
			
		||||
{-|
 | 
			
		||||
The best according to a function, return up to @k@ results and the remaining
 | 
			
		||||
population.
 | 
			
		||||
 | 
			
		||||
If @k <= 0@, this returns the best one anyway (as if @k == 1@).
 | 
			
		||||
-}
 | 
			
		||||
bestsBy
 | 
			
		||||
  :: (Individual i, Monad m)
 | 
			
		||||
  => N
 | 
			
		||||
  -> (i -> m R)
 | 
			
		||||
  -> Population i
 | 
			
		||||
  -> m (NonEmpty i, [i])
 | 
			
		||||
bestsBy k f pop@(i :| pop')
 | 
			
		||||
  | k <= 0 = bestsBy 1 f pop
 | 
			
		||||
  | otherwise = foldM run (i :| [], []) pop'
 | 
			
		||||
  where
 | 
			
		||||
    run (bests, rest) i =
 | 
			
		||||
      ((NE.fromList . NE.take k) &&& (rest <>) . NE.drop k)
 | 
			
		||||
        <$> sorted (i <| bests)
 | 
			
		||||
    sorted =
 | 
			
		||||
      fmap (fmap fst . NE.sortOn (Down . snd)) . traverse (\i -> (i,) <$> f i)
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
The @k@ best individuals in the population when comparing using the supplied
 | 
			
		||||
function.
 | 
			
		||||
-}
 | 
			
		||||
-- TODO do this without a complete sort
 | 
			
		||||
bestsBy :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i]
 | 
			
		||||
bestsBy k f =
 | 
			
		||||
bestsBy' :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i]
 | 
			
		||||
bestsBy' k f =
 | 
			
		||||
  fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd)))
 | 
			
		||||
    . traverse (\i -> (i,) <$> f i)
 | 
			
		||||
 | 
			
		||||
prop_bestsBy_isBestsBy' k pop =
 | 
			
		||||
  k > 0
 | 
			
		||||
    ==> monadicIO
 | 
			
		||||
    $ do
 | 
			
		||||
      a <- fst <$> bestsBy k fitness pop
 | 
			
		||||
      b <- bestsBy' k fitness pop
 | 
			
		||||
      assert $ NE.toList a == b
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
The @k@ worst individuals in the population.
 | 
			
		||||
-}
 | 
			
		||||
worst :: (Individual i, Monad m) => N -> Population i -> m [i]
 | 
			
		||||
worst :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
 | 
			
		||||
worst = flip bestsBy (fmap negate . fitness)
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
The @k@ best individuals in the population.
 | 
			
		||||
-}
 | 
			
		||||
bests :: (Individual i, Monad m) => N -> Population i -> m [i]
 | 
			
		||||
bests :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
 | 
			
		||||
bests = flip bestsBy fitness
 | 
			
		||||
 | 
			
		||||
-- TODO add top x percent selection (select n guys, sort by fitness first)
 | 
			
		||||
 | 
			
		||||
-- TODO add top x percent parent selection (select n guys, sort by fitness first)
 | 
			
		||||
step
 | 
			
		||||
  :: (Individual i, MonadRandom m, Monad m)
 | 
			
		||||
  => N
 | 
			
		||||
  -> N
 | 
			
		||||
  => N -- ^ number of parents @nParents@ for creating @nParents@ children
 | 
			
		||||
  -> N -- ^ how many crossover points (the @nX@ in @nX@-point crossover)
 | 
			
		||||
  -> R -- ^ elitism ratio @pElite@
 | 
			
		||||
  -> Population i
 | 
			
		||||
  -> m (Population i)
 | 
			
		||||
step nParents nX pop = do
 | 
			
		||||
  iBests <- bests 1 pop
 | 
			
		||||
  is <- proportionate nParents pop
 | 
			
		||||
  i :| is' <- children nX is
 | 
			
		||||
  iWorsts <- worst nParents pop
 | 
			
		||||
  let popClean = foldr L.delete (NE.toList . unPop $ pop) $ iBests <> iWorsts
 | 
			
		||||
  -- TODO why does this not work? (we should use it!)
 | 
			
		||||
  -- Pop <$> (shuffle' . NE.nub $ i :| is' <> popClean <> iBests)
 | 
			
		||||
  return . Pop . NE.nub $ i :| is' <> popClean <> iBests
 | 
			
		||||
-- TODO parametrize selection: 'proportionate' and 'worst'
 | 
			
		||||
step nParents nX pElite pop = do
 | 
			
		||||
  iParents <- proportionate nParents pop
 | 
			
		||||
  iChildren <- NE.filter (`notElem` pop) <$> children nX iParents
 | 
			
		||||
  let pop' = pop `NE.appendl` iChildren
 | 
			
		||||
  (iBests, iRests) <- bests bestN pop'
 | 
			
		||||
  case iRests of
 | 
			
		||||
    [] -> return iBests
 | 
			
		||||
    (i : iRests') -> do
 | 
			
		||||
      (_, iRests') <-
 | 
			
		||||
        worst (length iBests + length iRests - length pop) (i :| iRests')
 | 
			
		||||
      return $ iBests `NE.appendl` iRests'
 | 
			
		||||
  where
 | 
			
		||||
    bestN = round . (pElite *) . fromIntegral $ NE.length pop
 | 
			
		||||
 | 
			
		||||
-- TODO prop_step_size =
 | 
			
		||||
 | 
			
		||||
{-|
 | 
			
		||||
Runs the GA, using in each iteration
 | 
			
		||||
 - @nParents@ parents for creating @nParents@ children and
 | 
			
		||||
 - @nX@-point crossover.
 | 
			
		||||
Given an initial population, runs the GA until the termination criterion is
 | 
			
		||||
fulfilled.
 | 
			
		||||
 | 
			
		||||
It terminates after the termination criterion is fulfilled.
 | 
			
		||||
Uses the pipes library to, in each step, 'Pipes.yield' the currently best known
 | 
			
		||||
solution.
 | 
			
		||||
-}
 | 
			
		||||
run
 | 
			
		||||
  :: (Individual i, Monad m, MonadRandom m)
 | 
			
		||||
  => N
 | 
			
		||||
  -> N
 | 
			
		||||
  => N -- ^ number of parents @nParents@ for creating @nParents@ children
 | 
			
		||||
  -> N -- ^ how many crossover points (the @nX@ in @nX@-point crossover)
 | 
			
		||||
  -> R -- ^ elitism ratio @pElite@
 | 
			
		||||
  -> Population i
 | 
			
		||||
  -> Termination i
 | 
			
		||||
  -> Producer (Int, Maybe R) m (Population i)
 | 
			
		||||
run nParents nX pop term = step' 0 pop
 | 
			
		||||
  -> Producer (Int, R) m (Population i)
 | 
			
		||||
run nParents nX pElite pop term = step' 0 pop
 | 
			
		||||
  where
 | 
			
		||||
    step' t pop
 | 
			
		||||
      | term pop t = return pop
 | 
			
		||||
      | otherwise = do
 | 
			
		||||
        pop' <- lift $ step nParents nX pop
 | 
			
		||||
        iBests <- lift $ bests 1 pop'
 | 
			
		||||
        case headMay iBests of
 | 
			
		||||
          Just iBest -> do
 | 
			
		||||
            f <- fitness iBest
 | 
			
		||||
            yield (t, Just f)
 | 
			
		||||
          Nothing ->
 | 
			
		||||
            yield (t, Nothing)
 | 
			
		||||
        pop' <- lift $ step nParents nX pElite pop
 | 
			
		||||
        (iBests, _) <- lift $ bests 1 pop'
 | 
			
		||||
        fs <- lift . sequence $ fitness <$> iBests
 | 
			
		||||
        let fBest = NE.head fs
 | 
			
		||||
        yield (t, fBest)
 | 
			
		||||
        step' (t + 1) pop'
 | 
			
		||||
 | 
			
		||||
-- * Termination criteria
 | 
			
		||||
 | 
			
		||||
@ -16,12 +16,12 @@ main = do
 | 
			
		||||
  let t = fromMaybe 100 $ headMay args >>= readMaybe
 | 
			
		||||
  hSetBuffering stdout NoBuffering
 | 
			
		||||
  pop <- mkPop
 | 
			
		||||
  pop' <- runEffect $ for (run 2 1 pop (steps t)) log
 | 
			
		||||
  res <- bests 5 pop'
 | 
			
		||||
  pop' <- runEffect $ for (run 2 1 (5/100) pop (steps t)) log
 | 
			
		||||
  (res, _) <- bests 5 pop'
 | 
			
		||||
  sequence_ $ format <$> res
 | 
			
		||||
  where
 | 
			
		||||
    format s = do
 | 
			
		||||
      f <- liftIO $ fitness s
 | 
			
		||||
      putErrText $ show f <> "\n" <> pretty s
 | 
			
		||||
    log = putText . csv
 | 
			
		||||
    csv (t, f) = show t <> " " <> maybe "inf" show f
 | 
			
		||||
    csv (t, f) = show t <> " " <> show f
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user