🎨 Reformat modules with new ormolu defaults
This commit is contained in:
parent
5c448dce09
commit
da5fc31ab8
352
src/GA.hs
352
src/GA.hs
|
@ -2,25 +2,24 @@
|
||||||
{-# LANGUAGE DeriveFunctor #-}
|
{-# LANGUAGE DeriveFunctor #-}
|
||||||
{-# LANGUAGE DeriveTraversable #-}
|
{-# LANGUAGE DeriveTraversable #-}
|
||||||
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
||||||
{-# LANGUAGE NoImplicitPrelude #-}
|
|
||||||
{-# LANGUAGE OverloadedStrings #-}
|
{-# LANGUAGE OverloadedStrings #-}
|
||||||
{-# LANGUAGE TemplateHaskell #-}
|
{-# LANGUAGE TemplateHaskell #-}
|
||||||
{-# LANGUAGE TupleSections #-}
|
{-# LANGUAGE TupleSections #-}
|
||||||
|
{-# LANGUAGE NoImplicitPrelude #-}
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Module : GA
|
-- Module : GA
|
||||||
Description : Abstract genetic algorithm
|
-- Description : Abstract genetic algorithm
|
||||||
Copyright : David Pätzel, 2019
|
-- Copyright : David Pätzel, 2019
|
||||||
License : GPL-3
|
-- License : GPL-3
|
||||||
Maintainer : David Pätzel <david.paetzel@posteo.de>
|
-- Maintainer : David Pätzel <david.paetzel@posteo.de>
|
||||||
Stability : experimental
|
-- Stability : experimental
|
||||||
|
--
|
||||||
Simplistic abstract definition of a genetic algorithm.
|
-- Simplistic abstract definition of a genetic algorithm.
|
||||||
|
--
|
||||||
In order to use it for a certain problem, basically, you have to make your
|
-- In order to use it for a certain problem, basically, you have to make your
|
||||||
solution type an instance of 'Individual' and then simply call the 'run'
|
-- solution type an instance of 'Individual' and then simply call the 'run'
|
||||||
function.
|
-- function.
|
||||||
-}
|
|
||||||
module GA where
|
module GA where
|
||||||
|
|
||||||
import Control.Arrow hiding (first, second)
|
import Control.Arrow hiding (first, second)
|
||||||
|
@ -42,19 +41,17 @@ type N = Int
|
||||||
type R = Double
|
type R = Double
|
||||||
|
|
||||||
class Eq i => Individual i where
|
class Eq i => Individual i where
|
||||||
|
-- |
|
||||||
|
-- Generates a completely random individual given an existing individual.
|
||||||
|
--
|
||||||
|
-- We have to add @i@ here as a parameter in order to be able to inject stuff.
|
||||||
|
|
||||||
{-|
|
|
||||||
Generates a completely random individual given an existing individual.
|
|
||||||
|
|
||||||
We have to add @i@ here as a parameter in order to be able to inject stuff.
|
|
||||||
-}
|
|
||||||
-- TODO This (and also, Seminar.I, which contains an ugly parameter @p@) has
|
-- TODO This (and also, Seminar.I, which contains an ugly parameter @p@) has
|
||||||
-- to be done nicer!
|
-- to be done nicer!
|
||||||
new :: (MonadRandom m) => i -> m i
|
new :: (MonadRandom m) => i -> m i
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Generates a random population of the given size.
|
-- Generates a random population of the given size.
|
||||||
-}
|
|
||||||
population :: (MonadRandom m) => N -> i -> m (Population i)
|
population :: (MonadRandom m) => N -> i -> m (Population i)
|
||||||
population n i
|
population n i
|
||||||
| n <= 0 = undefined
|
| n <= 0 = undefined
|
||||||
|
@ -64,34 +61,30 @@ class Eq i => Individual i where
|
||||||
|
|
||||||
crossover1 :: (MonadRandom m) => i -> i -> m (Maybe (i, i))
|
crossover1 :: (MonadRandom m) => i -> i -> m (Maybe (i, i))
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
An individual's fitness. Higher values are considered “better”.
|
-- An individual's fitness. Higher values are considered “better”.
|
||||||
|
--
|
||||||
We explicitely allow fitness values to be have any sign (see, for example,
|
-- We explicitely allow fitness values to be have any sign (see, for example,
|
||||||
'proportionate1').
|
-- 'proportionate1').
|
||||||
-}
|
|
||||||
fitness :: (Monad m) => i -> m R
|
fitness :: (Monad m) => i -> m R
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Performs an n-point crossover.
|
-- Performs an n-point crossover.
|
||||||
|
--
|
||||||
Given the function for single-point crossover, 'crossover1', this function can
|
-- Given the function for single-point crossover, 'crossover1', this function can
|
||||||
be derived through recursion and a monad combinator (which is also the default
|
-- be derived through recursion and a monad combinator (which is also the default
|
||||||
implementation).
|
-- implementation).
|
||||||
-}
|
|
||||||
crossover :: (MonadRandom m) => N -> i -> i -> m (Maybe (i, i))
|
crossover :: (MonadRandom m) => N -> i -> i -> m (Maybe (i, i))
|
||||||
crossover n i1 i2
|
crossover n i1 i2
|
||||||
| n <= 0 = return $ Just (i1, i2)
|
| n <= 0 = return $ Just (i1, i2)
|
||||||
| otherwise = do
|
| otherwise = do
|
||||||
isM <- crossover1 i1 i2
|
isM <- crossover1 i1 i2
|
||||||
maybe (return Nothing) (uncurry (crossover (n - 1))) isM
|
maybe (return Nothing) (uncurry (crossover (n - 1))) isM
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Needed for QuickCheck tests, for now, a very simplistic implementation should
|
-- Needed for QuickCheck tests, for now, a very simplistic implementation should
|
||||||
suffice.
|
-- suffice.
|
||||||
-}
|
|
||||||
instance Individual Integer where
|
instance Individual Integer where
|
||||||
|
|
||||||
new _ = sample $ uniform 0 (0 + 100000)
|
new _ = sample $ uniform 0 (0 + 100000)
|
||||||
|
|
||||||
mutate i = sample $ uniform (i - 10) (i + 10)
|
mutate i = sample $ uniform (i - 10) (i + 10)
|
||||||
|
@ -100,32 +93,31 @@ instance Individual Integer where
|
||||||
|
|
||||||
fitness = return . fromIntegral . negate
|
fitness = return . fromIntegral . negate
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Populations are just basic non-empty lists.
|
-- Populations are just basic non-empty lists.
|
||||||
-}
|
|
||||||
type Population i = NonEmpty i
|
type Population i = NonEmpty i
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Produces offspring circularly from the given list of parents.
|
-- Produces offspring circularly from the given list of parents.
|
||||||
-}
|
children ::
|
||||||
children
|
(Individual i, MonadRandom m) =>
|
||||||
:: (Individual i, MonadRandom m)
|
-- | The @nX@ of the @nX@-point crossover operator
|
||||||
=> N -- ^ The @nX@ of the @nX@-point crossover operator
|
N ->
|
||||||
-> NonEmpty i
|
NonEmpty i ->
|
||||||
-> m (NonEmpty i)
|
m (NonEmpty i)
|
||||||
children _ (i :| []) = (:| []) <$> mutate i
|
children _ (i :| []) = (:| []) <$> mutate i
|
||||||
children nX (i1 :| [i2]) = children2 nX i1 i2
|
children nX (i1 :| [i2]) = children2 nX i1 i2
|
||||||
children nX (i1 :| i2 : is') =
|
children nX (i1 :| i2 : is') =
|
||||||
(<>) <$> children2 nX i1 i2 <*> children nX (NE.fromList is')
|
(<>) <$> children2 nX i1 i2 <*> children nX (NE.fromList is')
|
||||||
|
|
||||||
prop_children_asManyAsParents
|
prop_children_asManyAsParents ::
|
||||||
:: (Individual a, Show a) => N -> NonEmpty a -> Property
|
(Individual a, Show a) => N -> NonEmpty a -> Property
|
||||||
prop_children_asManyAsParents nX is =
|
prop_children_asManyAsParents nX is =
|
||||||
again
|
again $
|
||||||
$ monadicIO
|
monadicIO $
|
||||||
$ do
|
do
|
||||||
is' <- lift $ children nX is
|
is' <- lift $ children nX is
|
||||||
return $ counterexample (show is') $ length is' == length is
|
return $ counterexample (show is') $ length is' == length is
|
||||||
|
|
||||||
children2 :: (Individual i, MonadRandom m) => N -> i -> i -> m (NonEmpty i)
|
children2 :: (Individual i, MonadRandom m) => N -> i -> i -> m (NonEmpty i)
|
||||||
children2 nX i1 i2 = do
|
children2 nX i1 i2 = do
|
||||||
|
@ -135,18 +127,17 @@ children2 nX i1 i2 = do
|
||||||
i6 <- mutate i4
|
i6 <- mutate i4
|
||||||
return $ i5 :| [i6]
|
return $ i5 :| [i6]
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
The best according to a function; returns up to @k@ results and the remaining
|
-- The best according to a function; returns up to @k@ results and the remaining
|
||||||
population.
|
-- population.
|
||||||
|
--
|
||||||
If @k <= 0@, this returns the best one anyway (as if @k == 1@).
|
-- If @k <= 0@, this returns the best one anyway (as if @k == 1@).
|
||||||
-}
|
bestsBy ::
|
||||||
bestsBy
|
(Individual i, Monad m) =>
|
||||||
:: (Individual i, Monad m)
|
N ->
|
||||||
=> N
|
(i -> m R) ->
|
||||||
-> (i -> m R)
|
Population i ->
|
||||||
-> Population i
|
m (NonEmpty i, [i])
|
||||||
-> m (NonEmpty i, [i])
|
|
||||||
bestsBy k f pop@(i :| pop')
|
bestsBy k f pop@(i :| pop')
|
||||||
| k <= 0 = bestsBy 1 f pop
|
| k <= 0 = bestsBy 1 f pop
|
||||||
| otherwise = foldM run (i :| [], []) pop'
|
| otherwise = foldM run (i :| [], []) pop'
|
||||||
|
@ -157,10 +148,9 @@ bestsBy k f pop@(i :| pop')
|
||||||
sorted =
|
sorted =
|
||||||
fmap (fmap fst . NE.sortOn (Down . snd)) . traverse (\i -> (i,) <$> f i)
|
fmap (fmap fst . NE.sortOn (Down . snd)) . traverse (\i -> (i,) <$> f i)
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
The @k@ best individuals in the population when comparing using the supplied
|
-- The @k@ best individuals in the population when comparing using the supplied
|
||||||
function.
|
-- function.
|
||||||
-}
|
|
||||||
bestsBy' :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i]
|
bestsBy' :: (Individual i, Monad m) => N -> (i -> m R) -> Population i -> m [i]
|
||||||
bestsBy' k f =
|
bestsBy' k f =
|
||||||
fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd)))
|
fmap (NE.take k . fmap fst . NE.sortBy (comparing (Down . snd)))
|
||||||
|
@ -168,48 +158,50 @@ bestsBy' k f =
|
||||||
|
|
||||||
prop_bestsBy_isBestsBy' :: Individual a => Int -> Population a -> Property
|
prop_bestsBy_isBestsBy' :: Individual a => Int -> Population a -> Property
|
||||||
prop_bestsBy_isBestsBy' k pop =
|
prop_bestsBy_isBestsBy' k pop =
|
||||||
k > 0
|
k > 0 ==>
|
||||||
==> monadicIO
|
monadicIO $
|
||||||
$ do
|
do
|
||||||
a <- fst <$> bestsBy k fitness pop
|
a <- fst <$> bestsBy k fitness pop
|
||||||
b <- bestsBy' k fitness pop
|
b <- bestsBy' k fitness pop
|
||||||
assert $ NE.toList a == b
|
assert $ NE.toList a == b
|
||||||
|
|
||||||
prop_bestsBy_lengths :: Individual a => Int -> Population a -> Property
|
prop_bestsBy_lengths :: Individual a => Int -> Population a -> Property
|
||||||
prop_bestsBy_lengths k pop =
|
prop_bestsBy_lengths k pop =
|
||||||
k > 0 ==> monadicIO $ do
|
k > 0 ==> monadicIO $ do
|
||||||
(bests, rest) <- bestsBy k fitness pop
|
(bests, rest) <- bestsBy k fitness pop
|
||||||
assert
|
assert $
|
||||||
$ length bests == min k (length pop) && length bests + length rest == length pop
|
length bests == min k (length pop) && length bests + length rest == length pop
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
The @k@ worst individuals in the population (and the rest of the population).
|
-- The @k@ worst individuals in the population (and the rest of the population).
|
||||||
-}
|
|
||||||
worst :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
|
worst :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
|
||||||
worst = flip bestsBy (fmap negate . fitness)
|
worst = flip bestsBy (fmap negate . fitness)
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
The @k@ best individuals in the population (and the rest of the population).
|
-- The @k@ best individuals in the population (and the rest of the population).
|
||||||
-}
|
|
||||||
bests :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
|
bests :: (Individual i, Monad m) => N -> Population i -> m (NonEmpty i, [i])
|
||||||
bests = flip bestsBy fitness
|
bests = flip bestsBy fitness
|
||||||
|
|
||||||
-- TODO add top x percent parent selection (select n guys, sort by fitness first)
|
-- TODO add top x percent parent selection (select n guys, sort by fitness first)
|
||||||
{-|
|
|
||||||
Performs one iteration of a steady state genetic algorithm that in each
|
-- |
|
||||||
iteration that creates @k@ offspring simply deletes the worst @k@ individuals
|
-- Performs one iteration of a steady state genetic algorithm that in each
|
||||||
while making sure that the given percentage of elitists survive (at least 1
|
-- iteration that creates @k@ offspring simply deletes the worst @k@ individuals
|
||||||
elitist, even if the percentage is 0 or low enough for rounding to result in 0
|
-- while making sure that the given percentage of elitists survive (at least 1
|
||||||
elitists).
|
-- elitist, even if the percentage is 0 or low enough for rounding to result in 0
|
||||||
-}
|
-- elitists).
|
||||||
stepSteady
|
stepSteady ::
|
||||||
:: (Individual i, MonadRandom m, Monad m)
|
(Individual i, MonadRandom m, Monad m) =>
|
||||||
=> Selection m i -- ^ Mechanism for selecting parents
|
-- | Mechanism for selecting parents
|
||||||
-> N -- ^ Number of parents @nParents@ for creating @nParents@ children
|
Selection m i ->
|
||||||
-> N -- ^ How many crossover points (the @nX@ in @nX@-point crossover)
|
-- | Number of parents @nParents@ for creating @nParents@ children
|
||||||
-> R -- ^ Elitism ratio @pElite@
|
N ->
|
||||||
-> Population i
|
-- | How many crossover points (the @nX@ in @nX@-point crossover)
|
||||||
-> m (Population i)
|
N ->
|
||||||
|
-- | Elitism ratio @pElite@
|
||||||
|
R ->
|
||||||
|
Population i ->
|
||||||
|
m (Population i)
|
||||||
stepSteady select nParents nX pElite pop = do
|
stepSteady select nParents nX pElite pop = do
|
||||||
-- TODO Consider keeping the fitness evaluations already done for pop (so we
|
-- TODO Consider keeping the fitness evaluations already done for pop (so we
|
||||||
-- only reevaluate iChildren)
|
-- only reevaluate iChildren)
|
||||||
|
@ -226,12 +218,13 @@ stepSteady select nParents nX pElite pop = do
|
||||||
then return elitists
|
then return elitists
|
||||||
else
|
else
|
||||||
(elitists <>)
|
(elitists <>)
|
||||||
. fst <$> bests (length pop - length elitists) (i :| is)
|
. fst
|
||||||
|
<$> bests (length pop - length elitists) (i :| is)
|
||||||
where
|
where
|
||||||
nBest = floor . (pElite *) . fromIntegral $ NE.length pop
|
nBest = floor . (pElite *) . fromIntegral $ NE.length pop
|
||||||
|
|
||||||
prop_stepSteady_constantPopSize
|
prop_stepSteady_constantPopSize ::
|
||||||
:: (Individual a, Show a) => NonEmpty a -> Property
|
(Individual a, Show a) => NonEmpty a -> Property
|
||||||
prop_stepSteady_constantPopSize pop =
|
prop_stepSteady_constantPopSize pop =
|
||||||
forAll
|
forAll
|
||||||
( (,)
|
( (,)
|
||||||
|
@ -243,82 +236,83 @@ prop_stepSteady_constantPopSize pop =
|
||||||
pop' <- lift $ stepSteady (tournament 4) nParents nX pElite pop
|
pop' <- lift $ stepSteady (tournament 4) nParents nX pElite pop
|
||||||
return . counterexample (show pop') $ length pop' == length pop
|
return . counterexample (show pop') $ length pop' == length pop
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Given an initial population, runs the GA until the termination criterion is
|
-- Given an initial population, runs the GA until the termination criterion is
|
||||||
fulfilled.
|
-- fulfilled.
|
||||||
|
--
|
||||||
Uses the pipes library to, in each step, 'Pipes.yield' the currently best known
|
-- Uses the pipes library to, in each step, 'Pipes.yield' the currently best known
|
||||||
solution.
|
-- solution.
|
||||||
-}
|
run ::
|
||||||
run
|
(Individual i, Monad m, MonadRandom m) =>
|
||||||
:: (Individual i, Monad m, MonadRandom m)
|
-- | Mechanism for selecting parents
|
||||||
=> Selection m i -- ^ Mechanism for selecting parents
|
Selection m i ->
|
||||||
-> N -- ^ Number of parents @nParents@ for creating @nParents@ children
|
-- | Number of parents @nParents@ for creating @nParents@ children
|
||||||
-> N -- ^ How many crossover points (the @nX@ in @nX@-point crossover)
|
N ->
|
||||||
-> R -- ^ Elitism ratio @pElite@
|
-- | How many crossover points (the @nX@ in @nX@-point crossover)
|
||||||
-> Population i
|
N ->
|
||||||
-> Termination i
|
-- | Elitism ratio @pElite@
|
||||||
-> Producer (Int, R) m (Population i)
|
R ->
|
||||||
|
Population i ->
|
||||||
|
Termination i ->
|
||||||
|
Producer (Int, R) m (Population i)
|
||||||
run select nParents nX pElite pop term = step' 0 pop
|
run select nParents nX pElite pop term = step' 0 pop
|
||||||
where
|
where
|
||||||
step' t pop
|
step' t pop
|
||||||
| term pop t = return pop
|
| term pop t = return pop
|
||||||
| otherwise = do
|
| otherwise = do
|
||||||
pop' <- lift $ stepSteady select nParents nX pElite pop
|
pop' <- lift $ stepSteady select nParents nX pElite pop
|
||||||
(iBests, _) <- lift $ bests 1 pop'
|
(iBests, _) <- lift $ bests 1 pop'
|
||||||
fs <- lift . sequence $ fitness <$> iBests
|
fs <- lift . sequence $ fitness <$> iBests
|
||||||
let fBest = NE.head fs
|
let fBest = NE.head fs
|
||||||
yield (t, fBest)
|
Pipes.yield (t, fBest)
|
||||||
step' (t + 1) pop'
|
step' (t + 1) pop'
|
||||||
|
|
||||||
-- * Selection mechanisms
|
-- * Selection mechanisms
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
A function generating a monadic action which selects a given number of
|
-- A function generating a monadic action which selects a given number of
|
||||||
individuals from the given population.
|
-- individuals from the given population.
|
||||||
-}
|
|
||||||
type Selection m i = N -> Population i -> m (NonEmpty i)
|
type Selection m i = N -> Population i -> m (NonEmpty i)
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Selects @n@ individuals from the population the given mechanism by repeatedly
|
-- Selects @n@ individuals from the population the given mechanism by repeatedly
|
||||||
selecting a single individual using the given selection mechanism (with
|
-- selecting a single individual using the given selection mechanism (with
|
||||||
replacement, so the same individual can be selected multiple times).
|
-- replacement, so the same individual can be selected multiple times).
|
||||||
-}
|
chain ::
|
||||||
chain
|
(Individual i, MonadRandom m) =>
|
||||||
:: (Individual i, MonadRandom m)
|
(Population i -> m i) ->
|
||||||
=> (Population i -> m i)
|
Selection m i
|
||||||
-> Selection m i
|
|
||||||
-- TODO Ensure that the same individual is not selected multiple times
|
-- TODO Ensure that the same individual is not selected multiple times
|
||||||
-- (require Selections to partition)
|
-- (require Selections to partition)
|
||||||
chain select1 n pop
|
chain select1 n pop
|
||||||
| n > 1 = (<|) <$> select1 pop <*> chain select1 (n - 1) pop
|
| n > 1 = (<|) <$> select1 pop <*> chain select1 (n - 1) pop
|
||||||
| otherwise = (:|) <$> select1 pop <*> return []
|
| otherwise = (:|) <$> select1 pop <*> return []
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Selects @n@ individuals from the population by repeatedly selecting a single
|
-- Selects @n@ individuals from the population by repeatedly selecting a single
|
||||||
indidual using a tournament of the given size (the same individual can be
|
-- indidual using a tournament of the given size (the same individual can be
|
||||||
selected multiple times, see 'chain').
|
-- selected multiple times, see 'chain').
|
||||||
-}
|
|
||||||
tournament :: (Individual i, MonadRandom m) => N -> Selection m i
|
tournament :: (Individual i, MonadRandom m) => N -> Selection m i
|
||||||
tournament nTrnmnt = chain (tournament1 nTrnmnt)
|
tournament nTrnmnt = chain (tournament1 nTrnmnt)
|
||||||
|
|
||||||
prop_tournament_selectsN :: Individual a => Int -> Int -> NonEmpty a -> Property
|
prop_tournament_selectsN :: Individual a => Int -> Int -> NonEmpty a -> Property
|
||||||
prop_tournament_selectsN nTrnmnt n pop =
|
prop_tournament_selectsN nTrnmnt n pop =
|
||||||
0 < nTrnmnt && nTrnmnt < length pop
|
0 < nTrnmnt
|
||||||
&& 0 < n ==> monadicIO
|
&& nTrnmnt < length pop
|
||||||
|
&& 0 < n
|
||||||
|
==> monadicIO
|
||||||
$ do
|
$ do
|
||||||
pop' <- lift $ tournament 2 n pop
|
pop' <- lift $ tournament 2 n pop
|
||||||
assert $ length pop' == n
|
assert $ length pop' == n
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Selects one individual from the population using tournament selection.
|
-- Selects one individual from the population using tournament selection.
|
||||||
-}
|
tournament1 ::
|
||||||
tournament1
|
(Individual i, MonadRandom m) =>
|
||||||
:: (Individual i, MonadRandom m)
|
-- | Tournament size
|
||||||
=> N
|
N ->
|
||||||
-- ^ Tournament size
|
Population i ->
|
||||||
-> Population i
|
m i
|
||||||
-> m i
|
|
||||||
tournament1 nTrnmnt pop
|
tournament1 nTrnmnt pop
|
||||||
-- TODO Use Positive for this constraint
|
-- TODO Use Positive for this constraint
|
||||||
| nTrnmnt <= 0 = undefined
|
| nTrnmnt <= 0 = undefined
|
||||||
|
@ -326,21 +320,20 @@ tournament1 nTrnmnt pop
|
||||||
where
|
where
|
||||||
trnmnt = withoutReplacement nTrnmnt pop
|
trnmnt = withoutReplacement nTrnmnt pop
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Selects @n@ individuals uniformly at random from the population (without
|
-- Selects @n@ individuals uniformly at random from the population (without
|
||||||
replacement, so if @n >= length pop@, simply returns @pop@).
|
-- replacement, so if @n >= length pop@, simply returns @pop@).
|
||||||
-}
|
withoutReplacement ::
|
||||||
withoutReplacement
|
(MonadRandom m) =>
|
||||||
:: (MonadRandom m)
|
-- | How many individuals to select
|
||||||
=> N
|
N ->
|
||||||
-- ^ How many individuals to select
|
Population i ->
|
||||||
-> Population i
|
m (NonEmpty i)
|
||||||
-> m (NonEmpty i)
|
|
||||||
withoutReplacement 0 _ = undefined
|
withoutReplacement 0 _ = undefined
|
||||||
withoutReplacement n pop
|
withoutReplacement n pop
|
||||||
| n >= length pop = return pop
|
| n >= length pop = return pop
|
||||||
| otherwise =
|
| otherwise =
|
||||||
fmap NE.fromList . sample . shuffleNofM n (length pop) $ NE.toList pop
|
fmap NE.fromList . sample . shuffleNofM n (length pop) $ NE.toList pop
|
||||||
|
|
||||||
prop_withoutReplacement_selectsN :: Int -> NonEmpty a -> Property
|
prop_withoutReplacement_selectsN :: Int -> NonEmpty a -> Property
|
||||||
prop_withoutReplacement_selectsN n pop =
|
prop_withoutReplacement_selectsN n pop =
|
||||||
|
@ -350,23 +343,20 @@ prop_withoutReplacement_selectsN n pop =
|
||||||
|
|
||||||
-- * Termination criteria
|
-- * Termination criteria
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Termination decisions may take into account the current population and the
|
-- Termination decisions may take into account the current population and the
|
||||||
current iteration number.
|
-- current iteration number.
|
||||||
-}
|
|
||||||
type Termination i = Population i -> N -> Bool
|
type Termination i = Population i -> N -> Bool
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Termination after a number of steps.
|
-- Termination after a number of steps.
|
||||||
-}
|
|
||||||
steps :: N -> Termination i
|
steps :: N -> Termination i
|
||||||
steps tEnd _ t = t >= tEnd
|
steps tEnd _ t = t >= tEnd
|
||||||
|
|
||||||
-- * Helper functions
|
-- * Helper functions
|
||||||
|
|
||||||
{-|
|
-- |
|
||||||
Shuffles a non-empty list.
|
-- Shuffles a non-empty list.
|
||||||
-}
|
|
||||||
shuffle' :: (MonadRandom m) => NonEmpty a -> m (NonEmpty a)
|
shuffle' :: (MonadRandom m) => NonEmpty a -> m (NonEmpty a)
|
||||||
shuffle' xs@(_ :| []) = return xs
|
shuffle' xs@(_ :| []) = return xs
|
||||||
shuffle' xs = do
|
shuffle' xs = do
|
||||||
|
|
64
src/Main.hs
64
src/Main.hs
|
@ -1,55 +1,59 @@
|
||||||
{-# LANGUAGE FlexibleContexts #-}
|
{-# LANGUAGE FlexibleContexts #-}
|
||||||
{-# LANGUAGE NoImplicitPrelude #-}
|
|
||||||
{-# LANGUAGE OverloadedStrings #-}
|
{-# LANGUAGE OverloadedStrings #-}
|
||||||
|
{-# LANGUAGE NoImplicitPrelude #-}
|
||||||
|
|
||||||
import Options.Applicative
|
import Options.Applicative
|
||||||
import Pipes
|
import Pipes
|
||||||
import Pretty
|
import Pretty
|
||||||
import Protolude hiding (for, option)
|
import Protolude hiding (for, option)
|
||||||
import System.IO
|
import System.IO
|
||||||
import Szenario191
|
-- import Szenario212Pun
|
||||||
|
import Szenario222
|
||||||
|
|
||||||
data Options
|
data Options = Options
|
||||||
= Options
|
{ iterations :: N,
|
||||||
{ iterations :: N,
|
populationSize :: N
|
||||||
populationSize :: N
|
}
|
||||||
}
|
|
||||||
|
|
||||||
options :: Parser Options
|
options :: Parser Options
|
||||||
options =
|
options =
|
||||||
Options
|
Options
|
||||||
<$> option auto
|
<$> option
|
||||||
( long "iterations"
|
auto
|
||||||
<> short 'i'
|
( long "iterations"
|
||||||
<> metavar "N"
|
<> short 'i'
|
||||||
<> value 1000
|
<> metavar "N"
|
||||||
<> help "Number of iterations"
|
<> value 1000
|
||||||
)
|
<> help "Number of iterations"
|
||||||
<*> option auto
|
)
|
||||||
( long "population-size"
|
<*> option
|
||||||
<> short 'p'
|
auto
|
||||||
<> metavar "N"
|
( long "population-size"
|
||||||
<> value 100
|
<> short 'p'
|
||||||
<> help "Population size"
|
<> metavar "N"
|
||||||
)
|
<> value 100
|
||||||
|
<> help "Population size"
|
||||||
|
)
|
||||||
|
|
||||||
optionsWithHelp :: ParserInfo Options
|
optionsWithHelp :: ParserInfo Options
|
||||||
optionsWithHelp =
|
optionsWithHelp =
|
||||||
info (helper <*> options)
|
info
|
||||||
|
(helper <*> options)
|
||||||
( fullDesc
|
( fullDesc
|
||||||
<> progDesc "Run a GA"
|
<> progDesc "Run a GA"
|
||||||
<> header "haga - Haskell implementations of EAs"
|
<> header "haga - Haskell implementations of EAs"
|
||||||
)
|
)
|
||||||
|
|
||||||
main :: IO ()
|
main :: IO ()
|
||||||
main = execParser optionsWithHelp >>= \opts -> do
|
main =
|
||||||
hSetBuffering stdout NoBuffering
|
execParser optionsWithHelp >>= \opts -> do
|
||||||
pop <- population (populationSize opts) (I prios [])
|
hSetBuffering stdout NoBuffering
|
||||||
pop' <-
|
pop <- population (populationSize opts) (I prios [])
|
||||||
runEffect
|
pop' <-
|
||||||
$ for (run (tournament 2) 2 1 (5 / 100) pop (steps $ iterations opts)) log
|
runEffect $
|
||||||
(res, _) <- bests 5 pop'
|
for (run (tournament 2) 2 1 (5 / 100) pop (steps $ iterations opts)) log
|
||||||
sequence_ $ format <$> res
|
(res, _) <- bests 5 pop'
|
||||||
|
sequence_ $ format <$> res
|
||||||
where
|
where
|
||||||
format s = do
|
format s = do
|
||||||
f <- liftIO $ fitness s
|
f <- liftIO $ fitness s
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
{-# LANGUAGE NoImplicitPrelude #-}
|
|
||||||
{-# LANGUAGE OverloadedStrings #-}
|
{-# LANGUAGE OverloadedStrings #-}
|
||||||
|
{-# LANGUAGE NoImplicitPrelude #-}
|
||||||
|
|
||||||
module Szenario191
|
module Szenario191
|
||||||
( module Seminar,
|
( module Seminar,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user