clean up, organize and document

This commit is contained in:
Johannes Merl 2024-04-22 14:33:40 +02:00
parent 5945016607
commit ea687a2fbb
25 changed files with 390 additions and 410 deletions

View File

@ -1,4 +1,4 @@
cabal-version: 2.2
cabal-version: 3.4
name: haga
version: 0.1.0.0
synopsis: Simplistic genetic algorithms library
@ -43,23 +43,25 @@ library
, text
, wl-pprint-text
default-language: Haskell2010
ghc-options: -Wall -Wno-name-shadowing -Wno-orphans -threaded -rtsopts -O2
hs-source-dirs: src
ghc-options: -Wall -Wno-name-shadowing -Wno-orphans -O2
hs-source-dirs: lib, lambda/lib
other-modules: CommonDefinition
exposed-modules: GA
, Seminar
, Pretty
, Szenario191
, LambdaCalculus
, NurseryDataset
, NurseryData
, Pretty
, Utils
executable haga
, LambdaDatasets.NurseryDefinition
, LambdaDatasets.GermanDefinition
, LambdaDatasets.IrisDefinition
executable haga-lambda
build-depends: base
, bytestring
, cassava
, containers
, extra
, hint
, haga
, monad-loops
, MonadRandom
, mwc-random
@ -78,16 +80,32 @@ executable haga
, wl-pprint-text
default-language: Haskell2010
ghc-options: -Wall -Wno-name-shadowing -Wno-orphans -threaded -rtsopts -O2
hs-source-dirs: src
hs-source-dirs: lambda/src
main-is: Main.hs
other-modules: GA
, Seminar
, Pretty
other-modules: LambdaDatasets.NurseryDataset
, LambdaDatasets.NurseryData
, LambdaDatasets.GermanDataset
, LambdaDatasets.GermanData
, LambdaDatasets.IrisDataset
, LambdaDatasets.IrisData
executable haga-students
build-depends: base
, extra
, haga
, optparse-applicative
, protolude
, pipes
, QuickCheck
, quickcheck-instances
, random-fu
, text
default-language: Haskell2010
ghc-options: -Wall -Wno-name-shadowing -Wno-orphans -threaded -rtsopts -O2
hs-source-dirs: src-students
main-is: Main.hs
other-modules: Seminar
, Szenario191
, LambdaCalculus
, NurseryDataset
, NurseryData
, Utils
executable haga-test
build-depends: base
@ -96,6 +114,7 @@ executable haga-test
, cassava
, containers
, extra
, haga
, hint
, monad-loops
, MonadRandom
@ -115,13 +134,5 @@ executable haga-test
, wl-pprint-text
default-language: Haskell2010
ghc-options: -Wall -Wno-name-shadowing -Wno-orphans -threaded -rtsopts -O2
hs-source-dirs: src
hs-source-dirs: lib
main-is: Test.hs
other-modules: GA
, Seminar
, Pretty
, Szenario191
, LambdaCalculus
, NurseryDataset
, NurseryData
, Utils

17
lambda/README.md Normal file
View File

@ -0,0 +1,17 @@
# Why this split:
The Module(s) used when evaluating individuals has to be in an external library to make Hint work. so we split the lamda-calculus command program in a library we need to expose in the main library and the implementation.
Sadly, ghc / ghci / cabal can not properly make a public, internal library available to ghci (and, with that, Hint). Should this ever change:
```
library haga-lambda-lib
visibility: public
build-depends: base
, protolude
default-language: Haskell2010
ghc-options: -Wall -Wno-orphans -O2
hs-source-dirs: lambda/lib
other-modules: CommonDefinition
exposed-modules: LambdaDatasets.NurseryDefinition
```

View File

@ -0,0 +1,9 @@
{-# LANGUAGE NoImplicitPrelude #-}
module CommonDefinition where
import Protolude
if' :: Bool -> a -> a -> a
if' True e _ = e
if' False _ e = e

View File

@ -0,0 +1,38 @@
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module LambdaDatasets.GermanDefinition
( module LambdaDatasets.GermanDefinition,
module CommonDefinition,
) where
import Protolude
import CommonDefinition
data GermanClass = Accept | Deny deriving (Eq, Generic, Show, Enum, Bounded)
data AccountStatus = AccountInDebt | NoAccount | LowAccountBalance | HighAccountBalanceOrRegular deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data CreditHistory = HistoryGood | HistoryGoodHere | HistoryGoodSoFar | DelaysInHistory | CreditsExist deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Purpose = OldCar | NewCar | FunitureOrEquipment | Tech | Appliances | Repairs | Education | Retraining | Business | Other deriving (Eq, Generic, Show, Enum, Bounded)
data Savings = UnknownOrNone | SmallSavings | NormalSavings | GoodSavings | GreatSavings deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data EmploymentStatus = NotEmployed | ShortTermEmployed | MediumTermEmployed | LongTermEmployed | VeteranEmployed deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data StatusAndSex = MaleAndSeperated | FemaleAndSeperatedOrMarried | MaleAndSingle | FemaleAndSingle | MaleAndWidowedOrMarried deriving (Eq, Generic, Show, Enum, Bounded)
data OtherDebtors = NoOtherDebtors | CoApplicant | Guarantor deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Property = UnknownOrNoProperty | RealEstate | Savings | CarOrOther deriving (Eq, Generic, Show, Enum, Bounded)
data OtherPlans = PlansAtBank | PlansAtStores | NoOtherPlans deriving (Eq, Generic, Show, Enum, Bounded)
data Housing = Renting | OwningRecidency | ResidingForFree deriving (Eq, Generic, Show, Enum, Bounded)
data Job = UnemployedOrUnskilledNonResident | UnskilledResident | Skilled | HighlySkilled deriving (Eq, Generic, Show, Enum, Bounded, Ord)

View File

@ -0,0 +1,16 @@
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module LambdaDatasets.IrisDefinition
( module LambdaDatasets.IrisDefinition,
module CommonDefinition,
) where
import Protolude
import CommonDefinition
data IrisClass = Setosa | Virginica | Versicolor deriving (Eq, Generic, Show, Enum, Bounded)

View File

@ -0,0 +1,32 @@
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module LambdaDatasets.NurseryDefinition
( module LambdaDatasets.NurseryDefinition,
module CommonDefinition,
) where
import Protolude
import CommonDefinition
data NurseryClass = NotRecommend | Recommend | VeryRecommend | Priority | SpecPriority deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Parents = Usual | Pretentious | GreatPret deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data HasNurs = ProperNurs | LessProperNurs | ImproperNurs | CriticalNurs | VeryCritNurs deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Form = CompleteFamilyForm | CompletedFamilyForm | IncompleteFamilyForm | FosterFamilyForm deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Children = OneChild | TwoChilds | ThreeChilds | MoreChilds deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Housing = ConvenientHousing | LessConvHousing | CriticalHousing deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Finance = ConvenientFinance | InconvFinance deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Social = NotProblematicSocial | SlightlyProblematicSocial | ProblematicSocial deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Health = NotRecommendHealth |RecommendedHealth | PriorityHealth deriving (Eq, Generic, Show, Enum, Bounded, Ord)

View File

@ -1,36 +1,13 @@
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module GermanData where
module LambdaDatasets.GermanData
( module LambdaDatasets.GermanDefinition,
module LambdaDatasets.GermanData,
)
where
import Protolude
data GermanClass = Accept | Deny deriving (Eq, Generic, Show, Enum, Bounded)
data AccountStatus = AccountInDebt | NoAccount | LowAccountBalance | HighAccountBalanceOrRegular deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data CreditHistory = HistoryGood | HistoryGoodHere | HistoryGoodSoFar | DelaysInHistory | CreditsExist deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Purpose = OldCar | NewCar | FunitureOrEquipment | Tech | Appliances | Repairs | Education | Retraining | Business | Other deriving (Eq, Generic, Show, Enum, Bounded)
data Savings = UnknownOrNone | SmallSavings | NormalSavings | GoodSavings | GreatSavings deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data EmploymentStatus = NotEmployed | ShortTermEmployed | MediumTermEmployed | LongTermEmployed | VeteranEmployed deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data StatusAndSex = MaleAndSeperated | FemaleAndSeperatedOrMarried | MaleAndSingle | FemaleAndSingle | MaleAndWidowedOrMarried deriving (Eq, Generic, Show, Enum, Bounded)
data OtherDebtors = NoOtherDebtors | CoApplicant | Guarantor deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Property = UnknownOrNoProperty | RealEstate | Savings | CarOrOther deriving (Eq, Generic, Show, Enum, Bounded)
data OtherPlans = PlansAtBank | PlansAtStores | NoOtherPlans deriving (Eq, Generic, Show, Enum, Bounded)
data Housing = Renting | OwningRecidency | ResidingForFree deriving (Eq, Generic, Show, Enum, Bounded)
data Job = UnemployedOrUnskilledNonResident | UnskilledResident | Skilled | HighlySkilled deriving (Eq, Generic, Show, Enum, Bounded, Ord)
import LambdaDatasets.GermanDefinition
germanTrainingData :: [((AccountStatus, Int, CreditHistory, Purpose, Int, Savings, EmploymentStatus, Int, StatusAndSex, OtherDebtors, Int, Property, Int, OtherPlans, Housing, Int, Job, Int, Bool, Bool), GermanClass)]
germanTrainingData =

View File

@ -4,10 +4,10 @@
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module GermanDataset
module LambdaDatasets.GermanDataset
( module LambdaCalculus,
module GermanDataset,
module GermanData,
module LambdaDatasets.GermanDataset,
module LambdaDatasets.GermanData,
module GA,
)
where
@ -19,7 +19,7 @@ import Data.Random.Distribution.Uniform
import qualified Data.Text as T
import Data.Tuple.Extra
import GA
import GermanData
import LambdaDatasets.GermanData
import LambdaCalculus
import qualified Language.Haskell.Interpreter as Hint
import qualified Language.Haskell.Interpreter.Unsafe as Hint
@ -29,8 +29,8 @@ import System.Random.MWC (createSystemRandom)
import qualified Type.Reflection as Ref
import Utils
germanLE :: LambdaEnviroment
germanLE =
lE :: LambdaEnviroment
lE =
LambdaEnviroment
{ functions =
Map.fromList
@ -90,18 +90,18 @@ germanLE =
weights =
ExpressionWeights
{ lambdaSpucker = 1,
lambdaSchlucker = 1,
lambdaSchlucker = 2,
symbol = 30,
variable = 10,
constant = 5
}
}
germanLEE :: LamdaExecutionEnv
germanLEE =
lEE :: LamdaExecutionEnv
lEE =
LamdaExecutionEnv
{ -- For now these need to define all available functions and types. Generic functions can be used.
imports = ["GermanDataset"],
imports = ["LambdaDatasets.GermanDefinition"],
training = True,
trainingData =
( map fst (takeFraktion 0.8 germanTrainingData),
@ -115,15 +115,15 @@ germanLEE =
results = Map.empty
}
shuffledGermanLEE :: IO LamdaExecutionEnv
shuffledGermanLEE = do
shuffledLEE :: IO LamdaExecutionEnv
shuffledLEE = do
mwc <- liftIO createSystemRandom
let smpl = ((sampleFrom mwc) :: RVar a -> IO a)
itD <- smpl $ shuffle germanTrainingData
return
LamdaExecutionEnv
{ -- For now these need to define all available functions and types. Generic functions can be used.
imports = ["GermanDataset"],
imports = ["LambdaDatasets.GermanDefinition"],
training = True,
trainingData =
( map fst (takeFraktion 0.8 itD),
@ -177,21 +177,17 @@ dset :: LamdaExecutionEnv -> ([(AccountStatus, Int, CreditHistory, Purpose, Int,
dset lEE = if training lEE then trainingData lEE else testData lEE
evalResults :: LamdaExecutionEnv -> [TypeRequester] -> Hint.InterpreterT IO [(TypeRequester, FittnesRes)]
evalResults ex trs = mapM (evalResult ex) trs
evalResult :: LamdaExecutionEnv -> TypeRequester -> Hint.InterpreterT IO (TypeRequester, FittnesRes)
evalResult ex tr = do
evalResults ex trs = do
Hint.setImports $ (map T.unpack (imports ex)) ++ ["Protolude"]
Hint.unsafeSetGhcOption "-O2"
result <- Hint.interpret (T.unpack (toLambdaExpressionS tr)) (Hint.as :: AccountStatus -> Int -> CreditHistory -> Purpose -> Int -> Savings -> EmploymentStatus -> Int -> StatusAndSex -> OtherDebtors -> Int -> Property -> Int -> OtherPlans -> Housing -> Int -> Job -> Int -> Bool -> Bool -> GermanClass)
let res = map (\(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> result a b c d e f g h i j k l m n o p q r s t) (fst (dset ex))
let resAndTarget = (zip (snd (dset ex)) res)
let acc = (foldr (\ts s -> if ((fst ts) == (snd ts)) then s + 1 else s) 0 resAndTarget) / fromIntegral (length resAndTarget)
let biasSmall = exp ((-(fromIntegral (countTrsR tr))) / 1000) -- 0 (schlecht) bis 1 (gut)
let fitness' = meanOfAccuricyPerClass resAndTarget
let score = fitness' + (biasSmall - 1)
return
( tr,
let arrayOfFunctionText = map toLambdaExpressionS trs
let textOfFunctionArray = "[" <> T.intercalate "," arrayOfFunctionText <> "]"
result <- Hint.interpret (T.unpack (textOfFunctionArray)) (Hint.as :: [AccountStatus -> Int -> CreditHistory -> Purpose -> Int -> Savings -> EmploymentStatus -> Int -> StatusAndSex -> OtherDebtors -> Int -> Property -> Int -> OtherPlans -> Housing -> Int -> Job -> Int -> Bool -> Bool -> GermanClass])
return $ zipWith (evalResult ex) trs result
evalResult :: LamdaExecutionEnv -> TypeRequester -> (AccountStatus -> Int -> CreditHistory -> Purpose -> Int -> Savings -> EmploymentStatus -> Int -> StatusAndSex -> OtherDebtors -> Int -> Property -> Int -> OtherPlans -> Housing -> Int -> Job -> Int -> Bool -> Bool -> GermanClass) -> (TypeRequester, FittnesRes)
evalResult ex tr result = ( tr,
FittnesRes
{ total = score,
fitnessTotal = fitness',
@ -202,7 +198,11 @@ evalResult ex tr = do
totalSize = countTrsR tr
}
)
where
res = map (\(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t) -> result a b c d e f g h i j k l m n o p q r s t) (fst (dset ex))
resAndTarget = (zip (snd (dset ex)) res)
acc = (foldr (\ts s -> if ((fst ts) == (snd ts)) then s + 1 else s) 0 resAndTarget) / fromIntegral (length resAndTarget)
biasSmall = exp ((-(fromIntegral (countTrsR tr))) / 1000) -- 0 (schlecht) bis 1 (gut)
fitness' = meanOfAccuricyPerClass resAndTarget
score = fitness' + (biasSmall - 1)
if' :: Bool -> a -> a -> a
if' True e _ = e
if' False _ e = e

View File

@ -4,17 +4,15 @@
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module IrisData where
module LambdaDatasets.IrisData
( module LambdaDatasets.IrisDefinition,
module LambdaDatasets.IrisData,
)
where
import Data.Csv
import LambdaDatasets.IrisDefinition
import Protolude
data IrisClass = Setosa | Virginica | Versicolor deriving (Eq, Generic, Show, Enum, Bounded)
instance FromRecord IrisClass
instance ToRecord IrisClass
irisTrainingData :: [((Float, Float, Float, Float), IrisClass)]
irisTrainingData =
[ ((6.7, 3.1, 4.4, 1.4), Versicolor),
@ -168,4 +166,3 @@ irisTrainingData =
((6.1, 2.6, 5.6, 1.4), Virginica),
((6.6, 2.9, 4.6, 1.3), Versicolor)
]

View File

@ -4,10 +4,10 @@
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module IrisDataset
module LambdaDatasets.IrisDataset
( module LambdaCalculus,
module IrisDataset,
module IrisData,
module LambdaDatasets.IrisDataset,
module LambdaDatasets.IrisData,
module GA,
)
where
@ -21,7 +21,7 @@ import qualified Data.Text as T
import Data.Tuple.Extra
import GA
import LambdaCalculus
import IrisData
import LambdaDatasets.IrisData
import qualified Language.Haskell.Interpreter as Hint
import qualified Language.Haskell.Interpreter.Unsafe as Hint
import Protolude
@ -29,8 +29,8 @@ import Utils
import Protolude.Error
import qualified Type.Reflection as Ref
irisLE :: LambdaEnviroment
irisLE =
lE :: LambdaEnviroment
lE =
LambdaEnviroment
{ functions =
Map.fromList
@ -59,11 +59,11 @@ irisLE =
}
}
irisLEE :: LamdaExecutionEnv
irisLEE =
lEE :: LamdaExecutionEnv
lEE =
LamdaExecutionEnv
{ -- For now these need to define all available functions and types. Generic functions can be used.
imports = ["IrisDataset"],
imports = ["LambdaDatasets.IrisDataset"],
training = True,
trainingData =
( map fst (takeFraktion 0.8 irisTrainingData),
@ -77,14 +77,14 @@ irisLEE =
results = Map.empty
}
shuffledIrisLEE :: IO LamdaExecutionEnv
shuffledIrisLEE = do
shuffledLEE :: IO LamdaExecutionEnv
shuffledLEE = do
mwc <- liftIO createSystemRandom
let smpl = ((sampleFrom mwc) :: RVar a -> IO a)
itD <- smpl $ shuffle irisTrainingData
return LamdaExecutionEnv
{ -- For now these need to define all available functions and types. Generic functions can be used.
imports = ["IrisDataset"],
imports = ["LambdaDatasets.IrisDataset"],
training = True,
trainingData =
( map fst (takeFraktion 0.8 itD),
@ -138,21 +138,17 @@ dset :: LamdaExecutionEnv -> ([(Float, Float, Float, Float)], [IrisClass])
dset lEE = if training lEE then trainingData lEE else testData lEE
evalResults :: LamdaExecutionEnv -> [TypeRequester] -> Hint.InterpreterT IO [(TypeRequester, FittnesRes)]
evalResults ex trs = mapM (evalResult ex) trs
evalResult :: LamdaExecutionEnv -> TypeRequester -> Hint.InterpreterT IO (TypeRequester, FittnesRes)
evalResult ex tr = do
evalResults ex trs = do
Hint.setImports $ (map T.unpack (imports ex)) ++ ["Protolude"]
Hint.unsafeSetGhcOption "-O2"
result <- Hint.interpret (T.unpack (toLambdaExpressionS tr)) (Hint.as :: Float -> Float -> Float -> Float -> IrisClass)
let res = map (\(a, b, c, d) -> result a b c d) (fst (dset ex))
let resAndTarget = (zip (snd (dset ex)) res)
let acc = (foldr (\ts s -> if ((fst ts) == (snd ts)) then s + 1 else s) 0 resAndTarget) / fromIntegral (length resAndTarget)
let biasSmall = exp ((-(fromIntegral (countTrsR tr)))/1000) -- 0 (schlecht) bis 1 (gut)
let fitness' = meanOfAccuricyPerClass resAndTarget
let score = fitness' + (biasSmall - 1)
return
( tr,
let arrayOfFunctionText = map toLambdaExpressionS trs
let textOfFunctionArray = "[" <> T.intercalate "," arrayOfFunctionText <> "]"
result <- Hint.interpret (T.unpack (textOfFunctionArray)) (Hint.as :: [Float -> Float -> Float -> Float -> IrisClass])
return $ zipWith (evalResult ex) trs result
evalResult :: LamdaExecutionEnv -> TypeRequester -> (Float -> Float -> Float -> Float -> IrisClass) -> (TypeRequester, FittnesRes)
evalResult ex tr result = ( tr,
FittnesRes
{ total = score,
fitnessTotal = fitness',
@ -163,8 +159,10 @@ evalResult ex tr = do
totalSize = countTrsR tr
}
)
if' :: Bool -> a -> a -> a
if' True e _ = e
if' False _ e = e
where
res = map (\(a, b, c, d) -> result a b c d) (fst (dset ex))
resAndTarget = (zip (snd (dset ex)) res)
acc = (foldr (\ts s -> if ((fst ts) == (snd ts)) then s + 1 else s) 0 resAndTarget) / fromIntegral (length resAndTarget)
biasSmall = exp ((-(fromIntegral (countTrsR tr))) / 1000) -- 0 (schlecht) bis 1 (gut)
fitness' = meanOfAccuricyPerClass resAndTarget
score = fitness' + (biasSmall - 1)

View File

@ -4,27 +4,14 @@
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module NurseryData where
module LambdaDatasets.NurseryData
( module LambdaDatasets.NurseryDefinition,
module LambdaDatasets.NurseryData,
)
where
import Protolude
data NurseryClass = NotRecommend | Recommend | VeryRecommend | Priority | SpecPriority deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Parents = Usual | Pretentious | GreatPret deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data HasNurs = ProperNurs | LessProperNurs | ImproperNurs | CriticalNurs | VeryCritNurs deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Form = CompleteFamilyForm | CompletedFamilyForm | IncompleteFamilyForm | FosterFamilyForm deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Children = OneChild | TwoChilds | ThreeChilds | MoreChilds deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Housing = ConvenientHousing | LessConvHousing | CriticalHousing deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Finance = ConvenientFinance | InconvFinance deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Social = NotProblematicSocial | SlightlyProblematicSocial | ProblematicSocial deriving (Eq, Generic, Show, Enum, Bounded, Ord)
data Health = NotRecommendHealth |RecommendedHealth | PriorityHealth deriving (Eq, Generic, Show, Enum, Bounded, Ord)
import LambdaDatasets.NurseryDefinition
nurseryTrainingData :: [((Parents, HasNurs, Form, Children, Housing, Finance, Social, Health), NurseryClass)]
nurseryTrainingData =

View File

@ -4,10 +4,10 @@
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module NurseryDataset
module LambdaDatasets.NurseryDataset
( module LambdaCalculus,
module NurseryDataset,
module NurseryData,
module LambdaDatasets.NurseryDataset,
module LambdaDatasets.NurseryData,
module GA,
)
where
@ -19,7 +19,7 @@ import Data.Random.Distribution.Uniform
import qualified Data.Text as T
import Data.Tuple.Extra
import GA
import NurseryData
import LambdaDatasets.NurseryData
import LambdaCalculus
import qualified Language.Haskell.Interpreter as Hint
import qualified Language.Haskell.Interpreter.Unsafe as Hint
@ -29,8 +29,8 @@ import System.Random.MWC (createSystemRandom)
import qualified Type.Reflection as Ref
import Utils
nurseryLE :: LambdaEnviroment
nurseryLE =
lE :: LambdaEnviroment
lE =
LambdaEnviroment
{ functions =
Map.fromList
@ -74,52 +74,55 @@ nurseryLE =
((Ref.SomeTypeRep (Ref.TypeRep @(Health))), [(fmap show (enumUniform NotRecommendHealth PriorityHealth ))])
],
targetType = (Ref.SomeTypeRep (Ref.TypeRep @(Parents -> HasNurs -> Form -> Children -> Housing -> Finance -> Social -> Health -> NurseryClass))),
maxDepth = 7,
maxDepth = 8,
weights =
ExpressionWeights
{ lambdaSpucker = 2,
lambdaSchlucker = 1,
{ lambdaSpucker = 1,
lambdaSchlucker = 2,
symbol = 30,
variable = 20,
constant = 5
}
}
nurseryLEE :: LamdaExecutionEnv
nurseryLEE =
trainingFraction :: R
trainingFraction = (2/3)
lEE :: LamdaExecutionEnv
lEE =
LamdaExecutionEnv
{ -- For now these need to define all available functions and types. Generic functions can be used.
imports = ["NurseryDataset"],
imports = ["LambdaDatasets.NurseryDefinition"],
training = True,
trainingData =
( map fst (takeFraktion (2/3) nurseryTrainingData),
map snd (takeFraktion (2/3) nurseryTrainingData)
( map fst (takeFraktion trainingFraction nurseryTrainingData),
map snd (takeFraktion trainingFraction nurseryTrainingData)
),
testData =
( map fst (dropFraktion (2/3) nurseryTrainingData),
map snd (dropFraktion (2/3) nurseryTrainingData)
( map fst (dropFraktion trainingFraction nurseryTrainingData),
map snd (dropFraktion trainingFraction nurseryTrainingData)
),
exTargetType = (Ref.SomeTypeRep (Ref.TypeRep @(Parents -> HasNurs -> Form -> Children -> Housing -> Finance -> Social -> Health -> NurseryClass))),
results = Map.empty
}
shuffledNurseryLEE :: IO LamdaExecutionEnv
shuffledNurseryLEE = do
shuffledLEE :: IO LamdaExecutionEnv
shuffledLEE = do
mwc <- liftIO createSystemRandom
let smpl = ((sampleFrom mwc) :: RVar a -> IO a)
itD <- smpl $ shuffle nurseryTrainingData
return
LamdaExecutionEnv
{ -- For now these need to define all available functions and types. Generic functions can be used.
imports = ["NurseryDataset"],
imports = ["LambdaDatasets.NurseryDefinition"],
training = True,
trainingData =
( map fst (takeFraktion (2/3) itD),
map snd (takeFraktion (2/3) itD)
( map fst (takeFraktion trainingFraction itD),
map snd (takeFraktion trainingFraction itD)
),
testData =
( map fst (dropFraktion (2/3) itD),
map snd (dropFraktion (2/3) itD)
( map fst (dropFraktion trainingFraction itD),
map snd (dropFraktion trainingFraction itD)
),
exTargetType = (Ref.SomeTypeRep (Ref.TypeRep @(Parents -> HasNurs -> Form -> Children -> Housing -> Finance -> Social -> Health -> NurseryClass))),
results = Map.empty
@ -194,7 +197,3 @@ evalResult ex tr result = ( tr,
fitness' = meanOfAccuricyPerClass resAndTarget
score = fitness' + (biasSmall - 1)
if' :: Bool -> a -> a -> a
if' True e _ = e
if' False _ e = e

View File

@ -7,9 +7,9 @@ import Pipes
import Pretty
import Protolude hiding (for)
import System.IO
-- import Szenario212Pun
-- import Szenario191
import NurseryDataset
-- import LambdaDatasets.IrisDataset
-- import LambdaDatasets.NurseryDataset
import LambdaDatasets.GermanDataset
import Debug.Trace as DB
import qualified Data.Map.Strict as Map
@ -26,7 +26,7 @@ options =
( long "iterations"
<> short 'i'
<> metavar "N"
<> value 5000
<> value 1500
<> help "Number of iterations"
)
<*> option
@ -51,19 +51,19 @@ main :: IO ()
main =
execParser optionsWithHelp >>= \opts -> do
hSetBuffering stdout NoBuffering
nurseryLEE <- shuffledNurseryLEE
let env = nurseryLE
lEE <- shuffledLEE
let env = lE
let selType = Tournament 3
let run' = run nurseryLEE env selType 120 (5 / 100) (populationSize opts) (steps (iterations opts))
let run' = run lEE env selType 120 (5 / 100) (populationSize opts) (steps (iterations opts))
pop' <- runEffect (for run' logCsv)
nurseryLEE' <- calc nurseryLEE pop'
let (res, _) = bests nurseryLEE' 5 pop'
let nurseryLEE' = nurseryLEE {training = False}
nurseryLEE' <- calc nurseryLEE' res
mapM_ (format nurseryLEE') res
lEE' <- calc lEE pop'
let (res, _) = bests lEE' 5 pop'
let lEE' = lEE {training = False}
lEE' <- calc lEE' res
mapM_ (format lEE') res
where
format nurseryL s = do
let f = fitness' nurseryL s
format l s = do
let f = fitness' l s
putErrText $ show f <> "\n" <> pretty s
logCsv = putText . csv
csv (t, f) = show t <> " " <> show f

View File

@ -93,9 +93,15 @@ class (Individual i, Fitness r) => Evaluator i e r | i -> e r where
fitness :: e -> i -> R
fitness env i = getR ( fitness' env i)
-- |
-- An more complete fitness object, used to include more info to the output of the current fitness.
-- You can e.g. track individual size with this.
fitness' :: e -> i -> r
-- TODO kinda hacky?!?
-- |
-- here, fitness values for the next generation can be calculated at once, and just once, using any monadic action, if necessary.
-- It is guaranteed that the e passed to fitness is the result of a calc function, where the individual was part of the Population passed.
-- It may be smart to reuse known results between invocations.
calc :: e -> Population i -> IO e
calc eval _ = do
return eval

21
lib/Test.hs Normal file
View File

@ -0,0 +1,21 @@
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module Main where
import qualified GA
import Protolude
main :: IO ()
main = do
_ <- GA.runTests
return ()
if' :: Bool -> a -> a -> a
if' True x _ = x
if' False _ y = y

View File

@ -23,14 +23,18 @@ geomeanOfDistributionAccuracy results = geomean $ map (distributionAccuracyForCl
distributionAccuracyForClass :: (Eq r) => [(r, r)] -> r -> R
distributionAccuracyForClass results clas = (1 - (min 1 (fromIntegral (abs ((length (inResClass results clas)) - (length (inClass results clas)))) / fromIntegral (length (inClass results clas))))) * 100
mean :: (Show f, Floating f) => [f] -> f
mean values = (sum values) * (1 / (fromIntegral (length values)))
mean :: (Show f, RealFloat f) => [f] -> f
mean values = (sum filteredValues) * (1 / (fromIntegral (length filteredValues)))
where
filteredValues = filter (not . isNaN) values
geomean :: (Show f, Floating f) => [f] -> f
geomean values = (product values) ** (1 / (fromIntegral (length values)))
geomean :: (Show f, RealFloat f) => [f] -> f
geomean values = (product filteredValues) ** (1 / (fromIntegral (length filteredValues)))
where
filteredValues = filter (not . isNaN) values
accuracyInClass :: (Eq r) => [(r, r)] -> r -> R
accuracyInClass results clas = if fromIntegral (length (inClass results clas)) == 0 then 100 else ((accuracy' (inResClass results clas)) * 100) / fromIntegral (length (inClass results clas))
accuracyInClass results clas = ((accuracy' (inResClass results clas)) * 100) / fromIntegral (length (inClass results clas))
inClass :: (Eq r) => [(r, r)] -> r -> [(r, r)]
inClass results clas = (filter ((clas ==) . fst) results)
@ -46,11 +50,11 @@ repeatedly f x = case f x of
Nothing -> []
Just y -> y : repeatedly f y
contains :: (Eq a, Foldable t ) => t a -> a -> Bool
contains :: (Eq a, Foldable t) => t a -> a -> Bool
contains list val = any (== val) list
count :: (Eq a) => [a] -> a -> Int
count [] find = 0
count [] _ = 0
count ys find = length xs
where
xs = [xs | xs <- ys, xs == find]

View File

@ -6,4 +6,4 @@
#SBATCH --error=./output/error_run_%j.txt
#SBATCH --nodelist=oc-compute02
#SBATCH --mem=3G
srun nix develop --command stack --no-nix --system-ghc --no-install-ghc run haga
srun nix develop --command stack --no-nix --system-ghc --no-install-ghc run haga-lambda

65
src-students/Main.hs Normal file
View File

@ -0,0 +1,65 @@
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE NoImplicitPrelude #-}
import Options.Applicative
import Pipes
import Pretty
import Protolude hiding (for)
import System.IO
import Seminar
import Szenario191
data Options = Options
{ iterations :: !N,
populationSize :: !N
}
options :: Parser Options
options =
Options
<$> option
auto
( long "iterations"
<> short 'i'
<> metavar "N"
<> value 1500
<> help "Number of iterations"
)
<*> option
auto
( long "population-size"
<> short 'p'
<> metavar "N"
<> value 400
<> help "Population size"
)
optionsWithHelp :: ParserInfo Options
optionsWithHelp =
info
(helper <*> options)
( fullDesc
<> progDesc "Run a GA"
<> header "haga - Haskell implementations of EAs"
)
main :: IO ()
main =
execParser optionsWithHelp >>= \opts -> do
hSetBuffering stdout NoBuffering
let seminarEE = prios
let env = AssignmentEnviroment (students seminarEE, topics seminarEE)
let selType = Tournament 3
let run' = run seminarEE env selType 120 (5 / 100) (populationSize opts) (steps (iterations opts))
pop' <- runEffect (for run' logCsv)
seminarEE' <- calc seminarEE pop'
let (res, _) = bests seminarEE' 5 pop'
seminarEE' <- calc seminarEE' res
mapM_ (format seminarEE') res
where
format seminarL s = do
let f = fitness' seminarL s
putErrText $ show f <> "\n" <> pretty s
logCsv = putText . csv
csv (t, f) = show t <> " " <> show f

View File

@ -127,8 +127,6 @@ instance Environment Assignment AssignmentEnviroment where
-- Borrowed from TSP: Crossover cuts the parents in two and swaps them (if this
-- does not create an invalid offspring).
--
-- TODO Assumes that both individuals are based on the same priorities.
--
crossover1 e assignment1 assignment2 = do
let l = fromIntegral $ min (length assignment1) (length assignment2) :: Double
x <- uniform 0 l

21
src-students/Test.hs Normal file
View File

@ -0,0 +1,21 @@
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module Main where
import Protolude
import qualified Seminar
main :: IO ()
main = do
_ <- Seminar.runTests
return ()
if' :: Bool -> a -> a -> a
if' True x _ = x
if' False _ y = y

View File

@ -1,177 +0,0 @@
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module IrisData where
import Data.Csv
import Protolude
data IrisClass = Setosa | Virginica | Versicolor deriving (Eq, Generic, Show, Enum, Bounded)
instance FromRecord IrisClass
instance ToRecord IrisClass
irisData :: [((Float, Float, Float, Float), IrisClass)]
irisData =
[
((5.0, 3.5, 1.6, 0.6), Setosa),
((4.6, 3.1, 1.5, 0.2), Setosa),
((4.8, 3.4, 1.6, 0.2), Setosa),
((4.8, 3.0, 1.4, 0.3), Setosa),
((6.4, 2.9, 4.3, 1.3), Versicolor),
((5.5, 2.6, 4.4, 1.2), Versicolor),
((5.2, 2.7, 3.9, 1.4), Versicolor),
((6.0, 2.9, 4.5, 1.5), Versicolor),
((5.3, 3.7, 1.5, 0.2), Setosa),
((6.4, 3.2, 5.3, 2.3), Virginica),
((6.4, 3.1, 5.5, 1.8), Virginica),
((5.1, 3.8, 1.6, 0.2), Setosa),
((5.1, 3.7, 1.5, 0.4), Setosa),
((4.6, 3.4, 1.4, 0.3), Setosa),
((5.6, 3.0, 4.1, 1.3), Versicolor),
((6.1, 3.0, 4.6, 1.4), Versicolor),
((5.2, 3.5, 1.5, 0.2), Setosa),
((7.4, 2.8, 6.1, 1.9), Virginica),
((6.5, 2.8, 4.6, 1.5), Versicolor),
((6.3, 3.3, 6.0, 2.5), Virginica),
((4.8, 3.1, 1.6, 0.2), Setosa),
((7.7, 3.0, 6.1, 2.3), Virginica),
((6.0, 2.2, 5.0, 1.5), Virginica),
((5.5, 2.5, 4.0, 1.3), Versicolor),
((6.5, 3.0, 5.5, 1.8), Virginica),
((4.4, 2.9, 1.4, 0.2), Setosa),
((6.4, 3.2, 4.5, 1.5), Versicolor),
((5.0, 3.4, 1.6, 0.4), Setosa),
((6.1, 2.6, 5.6, 1.4), Virginica),
((6.6, 2.9, 4.6, 1.3), Versicolor),
((6.7, 3.1, 4.4, 1.4), Versicolor),
((5.4, 3.7, 1.5, 0.2), Setosa),
((5.4, 3.0, 4.5, 1.5), Versicolor),
((5.1, 3.8, 1.5, 0.3), Setosa),
((5.0, 2.3, 3.3, 1.0), Versicolor),
((6.0, 2.7, 5.1, 1.6), Versicolor),
((4.6, 3.2, 1.4, 0.2), Setosa),
((5.6, 2.7, 4.2, 1.3), Versicolor),
((6.7, 3.3, 5.7, 2.1), Virginica),
((6.9, 3.1, 5.1, 2.3), Virginica),
((7.7, 3.8, 6.7, 2.2), Virginica),
((6.1, 2.8, 4.7, 1.2), Versicolor),
((5.8, 2.7, 3.9, 1.2), Versicolor),
((6.7, 3.3, 5.7, 2.5), Virginica),
((5.0, 3.4, 1.5, 0.2), Setosa),
((4.7, 3.2, 1.6, 0.2), Setosa),
((6.8, 3.0, 5.5, 2.1), Virginica),
((6.2, 2.2, 4.5, 1.5), Versicolor),
((5.7, 3.8, 1.7, 0.3), Setosa),
((5.8, 4.0, 1.2, 0.2), Setosa),
((7.2, 3.2, 6.0, 1.8), Virginica),
((5.8, 2.7, 4.1, 1.0), Versicolor),
((6.5, 3.0, 5.8, 2.2), Virginica),
((6.9, 3.2, 5.7, 2.3), Virginica),
((5.8, 2.7, 5.1, 1.9), Virginica),
((5.2, 4.1, 1.5, 0.1), Setosa),
((4.6, 3.6, 1.0, 0.2), Setosa),
((4.7, 3.2, 1.3, 0.2), Setosa),
((6.9, 3.1, 5.4, 2.1), Virginica),
((6.1, 2.9, 4.7, 1.4), Versicolor),
((6.0, 3.4, 4.5, 1.6), Versicolor),
((5.6, 3.0, 4.5, 1.5), Versicolor),
((5.2, 3.4, 1.4, 0.2), Setosa),
((6.3, 3.3, 4.7, 1.6), Versicolor),
((7.2, 3.6, 6.1, 2.5), Virginica),
((6.5, 3.2, 5.1, 2.0), Virginica),
((6.3, 2.5, 4.9, 1.5), Versicolor),
((5.1, 3.8, 1.9, 0.4), Setosa),
((7.0, 3.2, 4.7, 1.4), Versicolor),
((4.9, 3.1, 1.5, 0.1), Setosa),
((4.9, 2.4, 3.3, 1.0), Versicolor),
((6.1, 3.0, 4.9, 1.8), Virginica),
((4.9, 3.1, 1.5, 0.1), Setosa),
((6.2, 2.9, 4.3, 1.3), Versicolor),
((5.7, 3.0, 4.2, 1.2), Versicolor),
((7.2, 3.0, 5.8, 1.6), Virginica),
((5.0, 2.0, 3.5, 1.0), Versicolor),
((4.3, 3.0, 1.1, 0.1), Setosa),
((6.7, 3.1, 4.7, 1.5), Versicolor),
((5.5, 2.4, 3.8, 1.1), Versicolor),
((5.7, 2.8, 4.5, 1.3), Versicolor),
((7.7, 2.8, 6.7, 2.0), Virginica),
((7.6, 3.0, 6.6, 2.1), Virginica),
((4.9, 2.5, 4.5, 1.7), Virginica),
((5.1, 2.5, 3.0, 1.1), Versicolor),
((6.4, 2.8, 5.6, 2.1), Virginica),
((6.4, 2.8, 5.6, 2.2), Virginica),
((5.9, 3.0, 5.1, 1.8), Virginica),
((4.4, 3.2, 1.3, 0.2), Setosa),
((6.3, 2.3, 4.4, 1.3), Versicolor),
((5.4, 3.4, 1.7, 0.2), Setosa),
((4.9, 3.0, 1.4, 0.2), Setosa),
((6.7, 3.0, 5.2, 2.3), Virginica),
((5.0, 3.5, 1.3, 0.3), Setosa),
((5.1, 3.3, 1.7, 0.5), Setosa),
((7.7, 2.6, 6.9, 2.3), Virginica),
((5.6, 2.9, 3.6, 1.3), Versicolor),
((7.3, 2.9, 6.3, 1.8), Virginica),
((6.7, 3.1, 5.6, 2.4), Virginica),
((6.3, 2.8, 5.1, 1.5), Virginica),
((5.6, 2.5, 3.9, 1.1), Versicolor),
((5.4, 3.9, 1.3, 0.4), Setosa),
((5.5, 2.3, 4.0, 1.3), Versicolor),
((6.4, 2.7, 5.3, 1.9), Virginica),
((5.1, 3.5, 1.4, 0.3), Setosa),
((5.5, 3.5, 1.3, 0.2), Setosa),
((5.0, 3.2, 1.2, 0.2), Setosa),
((5.1, 3.4, 1.5, 0.2), Setosa),
((5.4, 3.9, 1.7, 0.4), Setosa),
((4.5, 2.3, 1.3, 0.3), Setosa),
((6.7, 3.0, 5.0, 1.7), Versicolor),
((5.0, 3.3, 1.4, 0.2), Setosa),
((7.1, 3.0, 5.9, 2.1), Virginica),
((5.8, 2.6, 4.0, 1.2), Versicolor),
((6.3, 2.7, 4.9, 1.8), Virginica),
((6.8, 3.2, 5.9, 2.3), Virginica),
((6.6, 3.0, 4.4, 1.4), Versicolor),
((5.4, 3.4, 1.5, 0.4), Setosa),
((5.0, 3.6, 1.4, 0.2), Setosa),
((5.9, 3.2, 4.8, 1.8), Versicolor),
((6.3, 2.5, 5.0, 1.9), Virginica),
((6.0, 3.0, 4.8, 1.8), Virginica),
((7.9, 3.8, 6.4, 2.0), Virginica),
((5.9, 3.0, 4.2, 1.5), Versicolor),
((4.8, 3.0, 1.4, 0.1), Setosa),
((5.7, 2.8, 4.1, 1.3), Versicolor),
((6.7, 2.5, 5.8, 1.8), Virginica),
((5.7, 2.6, 3.5, 1.0), Versicolor),
((4.4, 3.0, 1.3, 0.2), Setosa),
((4.8, 3.4, 1.9, 0.2), Setosa),
((6.3, 3.4, 5.6, 2.4), Virginica),
((5.5, 4.2, 1.4, 0.2), Setosa),
((5.0, 3.0, 1.6, 0.2), Setosa),
((5.7, 2.9, 4.2, 1.3), Versicolor),
((6.2, 2.8, 4.8, 1.8), Virginica),
((6.2, 3.4, 5.4, 2.3), Virginica),
((6.5, 3.0, 5.2, 2.0), Virginica),
((4.9, 3.1, 1.5, 0.1), Setosa),
((5.8, 2.7, 5.1, 1.9), Virginica),
((5.1, 3.5, 1.4, 0.2), Setosa),
((5.6, 2.8, 4.9, 2.0), Virginica),
((5.5, 2.4, 3.7, 1.0), Versicolor),
((6.1, 2.8, 4.0, 1.3), Versicolor),
((5.7, 4.4, 1.5, 0.4), Setosa),
((6.9, 3.1, 4.9, 1.5), Versicolor),
((5.8, 2.8, 5.1, 2.4), Virginica),
((5.7, 2.5, 5.0, 2.0), Virginica),
((6.8, 2.8, 4.8, 1.4), Versicolor),
((6.3, 2.9, 5.6, 1.8), Virginica),
((6.0, 2.2, 4.0, 1.0), Versicolor),
]
irisTestData :: [((Float, Float, Float, Float), IrisClass)]
irisTestData =
[
]

View File

@ -1,39 +0,0 @@
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE NoImplicitPrelude #-}
module Main where
import Data.Random
import Data.Typeable
import qualified GA
import qualified LambdaCalculus
import Protolude
import qualified Seminar
import System.Random.MWC (createSystemRandom)
import qualified Type.Reflection as Ref
main :: IO ()
main = do
-- _ <- GA.runTests
-- _ <- Seminar.runTests
-- _ <- putStrLn $ ((show (typeRepArgs (Ref.SomeTypeRep (Ref.TypeRep @(Int -> Int -> Int -> Text))))) :: Text)
-- _ <- putStrLn $ ((show (typeRepArgs (Ref.SomeTypeRep (Ref.TypeRep @(Text))))) :: Text)
mwc <- createSystemRandom
r <- sampleFrom mwc $ GA.new LambdaCalculus.exampleLE
_ <- putStrLn $ LambdaCalculus.toLambdaExpressionS $ r
r <- sampleFrom mwc $ GA.new LambdaCalculus.exampleLE
_ <- putStrLn $ LambdaCalculus.toLambdaExpressionS $ r
-- _ <- putStrLn (LambdaCalculus.toLambdaExpressionShort LambdaCalculus.testIntToClassCorrect)
-- _ <- putStrLn $ ((show (LambdaCalculus.res 1)) :: Text)
-- _ <- putStrLn $ ((show (LambdaCalculus.res 2)) :: Text)
-- _ <- putStrLn $ ((show (LambdaCalculus.res 3)) :: Text)
return ()
if' :: Bool -> a -> a -> a
if' True x _ = x
if' False _ y = y