haga/src/GA.hs

372 lines
12 KiB
Haskell
Raw Normal View History

{-# LANGUAGE DeriveFoldable #-}
2019-10-17 18:23:19 +02:00
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}
2019-10-22 08:14:16 +02:00
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE NoImplicitPrelude #-}
-- |
-- Module : GA
-- Description : Abstract genetic algorithm
-- Copyright : David Pätzel, 2019
-- License : GPL-3
-- Maintainer : David Pätzel <david.paetzel@posteo.de>
-- Stability : experimental
--
-- Simplistic abstract definition of a genetic algorithm.
--
-- In order to use it for a certain problem, basically, you have to make your
-- solution type an instance of 'Individual' and then simply call the 'run'
-- function.
module GA where
2020-05-02 16:10:24 +02:00
import Control.Arrow hiding (first, second)
import Data.List.NonEmpty ((<|))
import qualified Data.List.NonEmpty as NE
import qualified Data.List.NonEmpty.Extra as NE (appendl, sortOn)
import Data.Random
2024-02-11 21:25:15 +01:00
import System.Random.MWC (create)
import Pipes
2019-10-17 18:23:19 +02:00
import Protolude
import Test.QuickCheck hiding (sample, shuffle)
import Test.QuickCheck.Instances ()
2019-10-22 08:14:16 +02:00
import Test.QuickCheck.Monadic
2019-10-22 06:53:53 +02:00
-- TODO there should be a few 'shuffle's here
-- TODO enforce this being > 0
type N = Int
2019-10-17 18:23:19 +02:00
type R = Double
class Eq i => Individual i where
-- |
-- Generates a completely random individual given an existing individual.
--
-- We have to add @i@ here as a parameter in order to be able to inject stuff.
2019-10-17 18:23:19 +02:00
-- TODO This (and also, Seminar.I, which contains an ugly parameter @p@) has
-- to be done nicer!
2024-02-11 21:25:15 +01:00
new :: i -> RVar i
2019-10-17 18:23:19 +02:00
-- |
-- Generates a random population of the given size.
2024-02-11 21:25:15 +01:00
population :: N -> i -> RVar (Population i)
population n i
| n <= 0 = undefined
| otherwise = NE.fromList <$> replicateM n (new i)
2019-10-17 18:23:19 +02:00
2024-02-11 21:25:15 +01:00
mutate :: i -> RVar i
2019-10-17 18:23:19 +02:00
2024-02-11 21:25:15 +01:00
crossover1 :: i -> i -> RVar (Maybe (i, i))
2019-10-17 18:23:19 +02:00
-- |
-- An individual's fitness. Higher values are considered “better”.
--
-- We explicitely allow fitness values to be have any sign (see, for example,
-- 'proportionate1').
fitness :: i -> R
2019-10-17 18:23:19 +02:00
-- |
-- Performs an n-point crossover.
--
-- Given the function for single-point crossover, 'crossover1', this function can
-- be derived through recursion and a monad combinator (which is also the default
-- implementation).
2024-02-11 21:25:15 +01:00
crossover :: N -> i -> i -> RVar (Maybe (i, i))
crossover n i1 i2
2019-10-17 18:23:19 +02:00
| n <= 0 = return $ Just (i1, i2)
| otherwise = do
isM <- crossover1 i1 i2
maybe (return Nothing) (uncurry (crossover (n - 1))) isM
-- |
-- Needed for QuickCheck tests, for now, a very simplistic implementation should
-- suffice.
instance Individual Integer where
2024-02-11 21:25:15 +01:00
new _ = uniform 0 (0 + 100000)
2024-02-11 21:25:15 +01:00
mutate i = uniform (i - 10) (i + 10)
crossover1 i1 i2 = return $ Just (i1 - i2, i2 - i1)
fitness = fromIntegral . negate
-- |
-- Populations are just basic non-empty lists.
type Population i = NonEmpty i
2019-10-22 08:14:16 +02:00
-- |
-- Produces offspring circularly from the given list of parents.
children ::
2024-02-11 21:25:15 +01:00
(Individual i) =>
-- | The @nX@ of the @nX@-point crossover operator
N ->
NonEmpty i ->
2024-02-11 21:25:15 +01:00
RVar (NonEmpty i)
children _ (i :| []) = (:| []) <$> mutate i
children nX (i1 :| [i2]) = children2 nX i1 i2
children nX (i1 :| i2 : is') =
(<>) <$> children2 nX i1 i2 <*> children nX (NE.fromList is')
prop_children_asManyAsParents ::
(Individual a, Show a) => N -> NonEmpty a -> Property
2020-05-02 16:10:24 +02:00
prop_children_asManyAsParents nX is =
again $
monadicIO $
do
2024-02-11 21:25:15 +01:00
mwc <- Test.QuickCheck.Monadic.run create
is' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (children nX is)
return $ counterexample (show is') $ length is' == length is
2020-05-02 16:10:24 +02:00
2024-02-11 21:25:15 +01:00
children2 :: (Individual i) => N -> i -> i -> RVar (NonEmpty i)
children2 nX i1 i2 = do
-- TODO Add crossover probability?
(i3, i4) <- fromMaybe (i1, i2) <$> crossover nX i1 i2
i5 <- mutate i3
i6 <- mutate i4
return $ i5 :| [i6]
-- |
-- The best according to a function; returns up to @k@ results and the remaining
-- population.
--
-- If @k <= 0@, this returns the best one anyway (as if @k == 1@).
bestsBy ::
(Individual i) =>
N ->
(i -> R) ->
Population i ->
(NonEmpty i, [i])
bestsBy k f pop
| k <= 0 = bestsBy 1 f pop
| otherwise = let (elites, rest) = NE.splitAt k $ map fst $ NE.sortBy (comparing (Down . snd)) $ map (\i -> (i, f i)) pop
in (NE.fromList elites, rest)
-- |
-- The @k@ best individuals in the population when comparing using the supplied
-- function.
bestsBy' :: (Individual i) => N -> (i -> R) -> Population i -> [i]
bestsBy' k f pop
| k <= 0 = bestsBy' 1 f pop
| otherwise = NE.take k $ map fst $ NE.sortBy (comparing (Down . snd)) $ map (\i -> (i, f i)) pop
prop_bestsBy_isBestsBy' :: Individual a => Int -> Population a -> Property
prop_bestsBy_isBestsBy' k pop =
k > 0 ==>
monadicIO $
do
let a = fst $ bestsBy k fitness pop
let b = bestsBy' k fitness pop
assert $ NE.toList a == b
prop_bestsBy_lengths :: Individual a => Int -> Population a -> Property
2020-01-07 09:17:39 +01:00
prop_bestsBy_lengths k pop =
k > 0 ==> monadicIO $ do
let (bests, rest) = bestsBy k fitness pop
assert $
length bests == min k (length pop) && length bests + length rest == length pop
2020-01-07 09:17:39 +01:00
-- |
-- The @k@ worst individuals in the population (and the rest of the population).
worst :: (Individual i) => N -> Population i -> (NonEmpty i, [i])
worst k pop = bestsBy k (negate . fitness) pop
-- |
-- The @k@ best individuals in the population (and the rest of the population).
bests :: (Individual i) => N -> Population i -> (NonEmpty i, [i])
bests k pop = bestsBy k fitness pop
-- TODO add top x percent parent selection (select n guys, sort by fitness first)
-- |
-- Performs one iteration of a steady state genetic algorithm that in each
-- iteration that creates @k@ offspring simply deletes the worst @k@ individuals
-- while making sure that the given percentage of elitists survive (at least 1
-- elitist, even if the percentage is 0 or low enough for rounding to result in 0
-- elitists).
stepSteady ::
2024-02-11 21:25:15 +01:00
(Individual i) =>
-- | Mechanism for selecting parents
2024-02-11 21:25:15 +01:00
Selection RVar i ->
-- | Number of parents @nParents@ for creating @nParents@ children
N ->
-- | How many crossover points (the @nX@ in @nX@-point crossover)
N ->
-- | Elitism ratio @pElite@
R ->
Population i ->
2024-02-11 21:25:15 +01:00
RVar (Population i)
stepSteady select nParents nX pElite pop = do
-- TODO Consider keeping the fitness evaluations already done for pop (so we
-- only reevaluate iChildren)
iParents <- select nParents pop
iChildren <- NE.filter (`notElem` pop) <$> children nX iParents
let pop' = pop `NE.appendl` iChildren
let eliteSize = floor . (pElite *) . fromIntegral $ NE.length pop
let (elitists, rest) = bests eliteSize pop'
2020-05-02 16:10:24 +02:00
case rest of
[] -> return elitists
otherwise ->
2020-05-02 16:10:24 +02:00
-- NOTE 'bests' always returns at least one individual, thus we need this
-- slightly ugly branching
if length elitists == length pop
then return elitists
else
return $ elitists <> (fst $ bests (length pop - length elitists) (NE.fromList rest))
2020-05-02 16:10:24 +02:00
prop_stepSteady_constantPopSize ::
(Individual a, Show a) => NonEmpty a -> Property
2020-05-02 16:10:24 +02:00
prop_stepSteady_constantPopSize pop =
forAll
( (,)
<$> choose (1, length pop)
<*> choose (1, length pop)
)
$ \(nParents, nX) -> monadicIO $ do
let pElite = 0.1
2024-02-11 21:25:15 +01:00
mwc <- Test.QuickCheck.Monadic.run create
pop' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (stepSteady (tournament 4) nParents nX pElite pop)
2020-05-02 16:10:24 +02:00
return . counterexample (show pop') $ length pop' == length pop
-- |
-- Given an initial population, runs the GA until the termination criterion is
-- fulfilled.
--
-- Uses the pipes library to, in each step, 'Pipes.yield' the currently best known
-- solution.
run ::
2024-02-11 21:25:15 +01:00
(Individual i) =>
-- | Mechanism for selecting parents
2024-02-11 21:25:15 +01:00
Selection RVar i ->
-- | Number of parents @nParents@ for creating @nParents@ children
N ->
-- | How many crossover points (the @nX@ in @nX@-point crossover)
N ->
-- | Elitism ratio @pElite@
R ->
2024-02-11 21:25:15 +01:00
RVar (Population i) ->
Termination i ->
2024-02-11 21:25:15 +01:00
Producer (Int, R) IO (Population i)
run select nParents nX pElite pop term = do
mwc <- lift create
let x = \currPop generation -> do
currPop' <- lift $ sampleFrom mwc $ currPop
if term currPop' generation
then return currPop'
else do
let nextPop = stepSteady select nParents nX pElite currPop'
nextPop' <- lift $ sampleFrom mwc $ nextPop
let fBest = fitness $ NE.head $ fst $ bests 1 nextPop'
2024-02-11 21:25:15 +01:00
Pipes.yield (generation, fBest)
x nextPop (generation + 1)
x pop 0
-- * Selection mechanisms
-- |
-- A function generating a monadic action which selects a given number of
-- individuals from the given population.
type Selection m i = N -> Population i -> m (NonEmpty i)
-- |
-- Selects @n@ individuals from the population the given mechanism by repeatedly
-- selecting a single individual using the given selection mechanism (with
-- replacement, so the same individual can be selected multiple times).
chain ::
2024-02-11 21:25:15 +01:00
(Individual i) =>
(Population i -> RVar i) ->
Selection RVar i
-- TODO Ensure that the same individual is not selected multiple times
-- (require Selections to partition)
chain select1 n pop
| n > 1 = (<|) <$> select1 pop <*> chain select1 (n - 1) pop
| otherwise = (:|) <$> select1 pop <*> return []
-- |
-- Selects @n@ individuals from the population by repeatedly selecting a single
-- indidual using a tournament of the given size (the same individual can be
-- selected multiple times, see 'chain').
2024-02-11 21:25:15 +01:00
tournament :: (Individual i) => N -> Selection RVar i
tournament nTrnmnt = chain (tournament1 nTrnmnt)
prop_tournament_selectsN :: Individual a => Int -> Int -> NonEmpty a -> Property
prop_tournament_selectsN nTrnmnt n pop =
0 < nTrnmnt
&& nTrnmnt < length pop
&& 0 < n
==> monadicIO
$ do
2024-02-11 21:25:15 +01:00
mwc <- Test.QuickCheck.Monadic.run create
pop' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (tournament 2 n pop)
assert $ length pop' == n
-- |
-- Selects one individual from the population using tournament selection.
tournament1 ::
2024-02-11 21:25:15 +01:00
(Individual i) =>
-- | Tournament size
N ->
Population i ->
2024-02-11 21:25:15 +01:00
RVar i
tournament1 nTrnmnt pop
-- TODO Use Positive for this constraint
| nTrnmnt <= 0 = undefined
| otherwise = do
paricipants <- withoutReplacement nTrnmnt pop
return $ NE.head $ fst $ bests 1 paricipants
-- |
-- Selects @n@ individuals uniformly at random from the population (without
-- replacement, so if @n >= length pop@, simply returns @pop@).
withoutReplacement ::
-- | How many individuals to select
N ->
Population i ->
2024-02-11 21:25:15 +01:00
RVar (NonEmpty i)
withoutReplacement 0 _ = undefined
withoutReplacement n pop
| n >= length pop = return pop
2024-02-11 21:25:15 +01:00
| otherwise = fmap (NE.fromList) (shuffleNofM n (length pop) (NE.toList pop))
prop_withoutReplacement_selectsN :: Int -> NonEmpty a -> Property
prop_withoutReplacement_selectsN n pop =
2024-02-11 21:25:15 +01:00
0 < n && n <= length pop ==> monadicIO (do
mwc <- Test.QuickCheck.Monadic.run create
pop' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (withoutReplacement n pop)
assert $ length pop' == n)
-- * Termination criteria
-- |
-- Termination decisions may take into account the current population and the
-- current iteration number.
type Termination i = Population i -> N -> Bool
-- |
-- Termination after a number of steps.
steps :: N -> Termination i
steps tEnd _ t = t >= tEnd
2019-10-22 08:14:16 +02:00
-- * Helper functions
-- |
-- Shuffles a non-empty list.
2024-02-11 21:25:15 +01:00
shuffle' :: NonEmpty a -> RVar (NonEmpty a)
shuffle' xs@(_ :| []) = return xs
2024-02-11 21:25:15 +01:00
shuffle' xs = fmap (NE.fromList) (shuffle (toList xs))
prop_shuffle_length :: NonEmpty a -> Property
2024-02-11 21:25:15 +01:00
prop_shuffle_length xs = monadicIO(do
mwc <- Test.QuickCheck.Monadic.run create
xs' <- Test.QuickCheck.Monadic.run $ sampleFrom mwc (shuffle' xs)
assert $ length xs' == length xs)
2019-10-22 08:14:16 +02:00
return []
runTests :: IO Bool
2019-10-22 08:14:16 +02:00
runTests = $quickCheckAll